

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 www.phytojournal.com JPP 2021; 10(1): 2276-2280 Received: 14-11-2020 Accepted: 18-12-2020

Ajeet Kumar

Ph.D. Research Scholar, Department of Agril. Meteorology, A.N.D.U.A & T. Kumarganj, Ayodhya, U.P., India

AK Singh

Associate Professor and Head, Department of Agronomy, A.N.D.U.A & T. Kumarganj, Ayodhya, U.P., India

Amit Kumar

Ph.D. Research Scholar, Department of Agril. Meteorology, A.N.D.U.A & T. Kumarganj, Ayodhya, U.P., India

RK Aryan

Ph.D. Research Scholar, Department of Agril. Meteorology, A.N.D.U.A & T. Kumarganj, Ayodhya, U.P., India

Kali Deen

Ph.D. Research Scholar, Department of Agronomy, A.N.D.U.A & T. Kumarganj, Ayodhya, U.P., India

Corresponding Author: Ajeet Kumar Ph.D. Research Scholar, Department of Agril. Meteorology, A.N.D.U.A & T. Kumarganj, Ayodhya, U.P., India

Studies on influence of El- Nino rainfall and crop production of major crops in Eastern Uttar Pradesh

Ajeet Kumar, AK Singh, Amit Kumar, RK Aryan and Kali Deen

Abstract

The average rainfall for the El Nino years (strong and moderate El Nino) calculated and compared with the normal rainfall for the years 1981 to 2016 during the four different seasons and also computed for the seasons in different districts. Present study data revealed that the average rainfall during the S-W monsoon season during the El Nino years was less than the normal rainfall in all the district of Eastern UP. The average annual rainfall or S-W monsoon season rainfall were less than normal rainfall during the years with El Nino. Production and productivity of Chickpea crop were decline during El-Nino years as compared to normal. Maximum decline in production of Chickpea (33.1%) was recorded in Bahraich district, Maximum production of Rice crops were decline during (9.7%) in Varanasi district, Maximum decline in production of wheat (4.5%) was recorded in Bahraich district and Maximum departure in production of maize (23.3%) in Mirzapur. Agricultural production and productivity of the region during the El Nino years, As the S-W monsoon rainfall and annual rainfall are likely to less than normal in the region Duhan at al. (2017).. Short duration crops and varieties as main crops/intercropping system can be adopted in the region. Productivity of rabi crops can be improved by judicious use of fertilizers and adoption of insect pest & diseases control during the early stages of its growth. Plantation crops like fruit and timber plants are likely to yield decline due to decrease of pre- monsoon rainfall and therefore moisture conservation practices need to be adopted.

Keywords: El-Nino effect, normal rainfall, erratic monsoon, production, Productivity and intercropping.

Introduction

The farmers are depended on the monsoon winds which are unpredictable. Increase in rainfall means a bumper crop production and erratic monsoon means a bad production of crops resulting into the loss of country's economy. So, in India still farmers depends upon the monsoon neglecting the technology and advancement in the field of agriculture. El-Nino refers to a large-scale ocean-atmosphere climate interaction associated with the episodic warming in sea surface temperatures (SST) across the central and east-central Equatorial Pacific. La Nina is an opposite event of El Nino which is termed as the episodic cooling of ocean SST in the central and east-central equatorial pacific, Bhuvaneswari, et al. (2013. El Niño events are mostly associated with warm and dry conditions in southern and eastern inland areas of Australia, as well as Indonesia, Philippines, Malaysia and central Pacific islands such as Fiji, Tonga and Papua New Guinea. The inter-annual variability of Indian summer monsoon rainfall (ISMR) has been linked to variations of Sea Surface Temperatures (SST) over the equatorial Pacific and Indian Oceans. ENSO events have a profound impact on summer monsoonal rainfall across India and most of the major droughts have occurred during El Nino events. However, its reverse is not always true. Previously El Niño had a strong association with droughts in India but this relationship has been weekend in recent years. El Niño conditions mostly coincide with a period of weak monsoon and rising temperatures in India and thus the probability of drought occurrence surges during El Nino events that could be disturbing for Indian crop production and water supply, Deng et al. (2010). Rainfall is the direct source for both rainfed and irrigated agriculture. In general, It drives the agricultural productivity of India. The quantum and the distribution of rainfall determine the agricultural productivity. In Eastern U.P., It determines not only the crop selections during kharif season but also the crop sequences in double cropping system in rabi season. Thus the monsoonal rainfall and its distribution are very crucial for crop success in Eastern Uttar Pradesh. The term El Nino and La Nina both have their origin in Spanish language with their respective meanings are "Christ child" and "a little girl" respectively. The name El Nino was chosen since as El-Nino events starts around December near Christmas, Devilal (2019). El-Nino refers to a largescale ocean-atmosphere climate interaction associated with the episodic warming in sea

surface temperatures (SST) across the central and east-central Equatorial Pacific. Fishermen from the coast of South America recognized this event with the appearance of unusually warm water in the Pacific Ocean. La Nina is an opposite event of El Nino which is termed as the episodic cooling of ocean SST in the central and east-central equatorial pacific, Dhyani *et al.* (2002). The fluctuations in SST during El Nino and La Nina events are associated with large fluctuations in air pressure which is termed as Southern Oscillation.

Methods and materials Rainfall data

Crop data – District wise

The area, production and yield of food grains, pulses, and oilseeds in different districts of Eastern U.P. for the years 1981 to 2016 were obtained from Directorate of Economics and Statistics, Government of U.P. Average production of major crops was worked out for all the selected districts for the period. Average area, production & yield of the crops in the El Nino years was worked out and comparison was made with overall average normal value for the purpose of weak, moderate or strong the El Nino years were classified from 1951 to 2016 as follows:

Intensity	Years
Weak	1951, 1963, 1968, 1969, 1976, 1977, 2004, 2006
Moderate	1986, 1987, 1994, 2002
Strong	1957, 1965, 1972, 1982, 1991, 1997, 2009, 2014, 2015

During the period considered for the present study from 1981 to 2016, there were 10 moderate and strong and two weak El Nino events out of 36 years.

Result and Discussion:

Influence on Rainfall: El Nino suggests the possibility of decline in production and productivity of total food grain in region. The effect of decreasing tendency of the SW monsoon rainfall on food grain production during El Nino years appears to be more in larger parts of the region;

Rice: Production and productivity of Rice crop of different districts were less during El-Nino years as compared to normal (Table -3). Maximum decline in production (9.7%) was recorded in Varanasi district followed by 7.2% in Basti and 7.2% Gonda district. However minimum production decline by 0.3% was recorded in Gorakhpur district. Maximum decline in productivity 7.1% was recorded in Varanasi district. followed by 5.7% decline in Azamgarh district. The minimum decline in productivity by 0.2% was recorded in Ghazipur district.

Maize: Production and productivity of Maize crop of different districts were less during El-Nino years as compared to normal (Table - 4). Maximum departure in production of maize (23.3%) over normal was found in Mirzapur district while minimum (1.2%) in Mau district followed by 1.7% decline over normal was in Ballia district. Data pertaining to yield, maximum decline due to El Nino over normal (12.8%) was found in Gagipur district followed by Sonbhadra district (9.6%) while minimum departure in yield of maize (0.3%) was found in Ballia district of Eastern U.P.

Wheat: Production and productivity of Wheat crop of different districts were less during El-Nino years as compared to normal (Table - 5). Maximum decline in production of wheat (4.5%) was recorded in Bahraich district while that of minimum decline was 0.7% in Deoria district. However, data pertaining to yield, maximum decline (2.5%) was recorded in Bahraich district followed by 2.4% decline in Siddharthnagar district of Eastern U.P. while minimum (0.2%) in Mirzapur and Ghazipur district.

Chickpea: Production and productivity of Chickpea crop of different districts were less during El-Nino years as compared to normal (Table - 6). Maximum decline in production of Chickpea (33.1%) was recorded in Bahraich district while that of minimum decline was (2.7%) in Azamgarh district. However, data pertaining to yield, maximum decline (31.8%) was recorded in Bahraich district followed by 9.4% decline in Barabanki district of Eastern U.P. while minimum (0.1%) in Ballia and Sonbhadra district.

 Table 1: Per cent change in average seasonal rainfall (mm) during El Nino years as compared to normal rainfall (mm) in Eastern Uttar Pradesh (1981-2016).

	Winter				Summer			SW Monsoon			Post Monsoon		
Name of Districts	(Jan-Feb)			(Mar-May)			(Jun-Sept)			(Oct-Dec)			
	El Nino	Normal	PC	El Nino	Normal	PC	El Nino	Normal	PC	El Nino	Normal	PC	
Jaunpur	48	53.2	-10.8	78	84.2	-7.9	882	886.2	-0.4	70	72	-2.8	
Ghazipur	40	47	-17.5	62	74.5	-20.1	910	929.8	-2.1	45	66.5	-47.7	
Ballia	42	46.3	-10.2	70	70.2	-0.2	913	892.2	2.3	58	67.4	-13.9	
Maharajganj	51	52	-1.9	130	140	-7.6	962	970	-0.8	100	112	-10.7	
Gorakhpur	55	57	-3.6	187	155.9	16.6	1005	982.1	2.3	109	122.2	-10.8	
Deoria	65	61.5	5.3	120	130	-8.3	1003	988.7	1.4	99	103	-4.0	
Basti	91	97.9	-7.5	143	152.8	-6.4	1010	1027.7	-1.7	111.5	121.5	-8.2	
Siddharthnagar	89	97.1	-8.3	147	152.8	-3.8	1021	1041.2	-1.9	104	119.5	-13.0	
Azamgarh	47	51.8	-9.3	76	78.1	-2.7	873	899.7	-3.0	75	73	2.6	
Mau	44	42	4.5	74	80	-7.5	890	900	-1.0	60	65	-7.7	
Faizabad	72	79.8	-9.8	102	103.5	-1.4	866	891.3	-2.9	90	86.8	3.7	
Gonda	76	82.7	-8.1	140	136.6	2.5	1002	1011.8	-1.0	120	117.6	2	
Bahraich	61	67.5	-10.6	100	103.8	-3.7	947	994.5	-4.8	90	88.7	1.5	
Sultanpur	63	66.7	-5.5	93	100.2	-7.7	825	886	-7.3	75	72.5	3.4	
Barabanki	58	64	-9.4	81	88.4	-8.4	800	878.7	-9.0	68	74.8	-9.1	
Varanasi	80	87.7	-9.6	67	72.7	-7.8	876	926.7	-5.5	58	67.2	-15.8	
Mirzapur	380	400	-5.0	88	86.6	1.5	900	935	-3.8	62	68.8	-9.9	
Sonbhadra	130	140	-7.6	87	90	-3.3	842	876	-3.9	60.5	65	-7.4	

 Table 2: Per cent change in district wise average annual rainfall (mm) during El Nino years as compared to normal rainfall years in Eastern Uttar Pradesh (1981 to 2016).

Name of Districts	Rainfall (mm)							
Name of Districts	El Nino years	Normal years	Percentage change					
Jaunpur	937	985	-5.1					
Ghazipur	1000	1034	-3.4					
Ballia	927	980	-5.7					
Maharajganj	1280	1350	-5.4					
Gorakhpur	1177	1225	-4.0					
Deoria	1162	1203	-3.5					
Basti	1146	1169	-2.0					
Siddharthnagar	1292	1376	-6.5					
Azamgarh	1003	1030	-2.6					
Mau	1049	1070	-2.0					
Faizabad	985	1002	-1.7					
Gonda	1125	1152	-2.4					
Bahraich	1113	1128	-1.3					
Sultanpur	999	1005	-0.6					
Barabanki	1044	1059	-1.4					
Varanasi	1080	1079	0.0					
Mirzapur	978	1022	-4.4					
Sonbhadra	999	1015	-1.6					

 Table 3: Per cent change in District wise average area sown (ha), production (tons) and yield (kg ha⁻¹) of Rice during El Nino year compared to normal years of Eastern Uttar Pradesh (1981 to 2016).

Nome of Districts		Area		Р	roduction		Yield		
Name of Districts	El Nino	Normal	PC*	El Nino	Normal	PC	El Nino	Normal	PC
Jaunpur	152653	157279	-3.0	348460	362683	-4.0	2283	2306	-1.0
Ghazipur	152547	154816	-1.4	377651	384250	-1.7	2475	2482	-0.2
Ballia	113013	115680	-2.3	280014	289551	-3.4	2476	2504	-1.1
Maharajganj	165047	166401	-0.8	401647	413836	-3.0	2433	2487	-2.2
Gorakhpur	151653	153183	-1.0	389748	390920	-0.3	2568	2552	0.6
Deoria	134253	135888	-1.2	301457	312408	-3.6	2245	2298	-2.3
Basti	103245	105369	-2.0	291487	312627	-7.2	2822	2967	-5.1
Siddharthnagar	171521	173506	-1.1	421545	449210	-6.5	2457	2588	-5.3
Azamgarh	214326	216040	-0.7	481573	512234	-6.3	2242	2371	-5.7
Mau	90013	91322	-1.4	204875	217894	-6.3	2276	2386	-4.8
Faizabad	99144	101926	-28.0	254876	263888	-3.5	2570	2588	-0.7
Gonda	121324	125428	-3.3	274551	294507	-7.2	2263	2348	-3.7
Bahraich	161844	164734	-1.7	394587	418920	-6.1	2438	2543	-4.3
Sultanpur	94155	95968	-1.9	295486	306621	-3.7	3137	3196	-1.8
Barabanki	175648	181604	-3.3	497894	520658	-4.5	2834	2867	-1.1
Varanasi	50494	51718	-2.4	120134	131831	-9.7	2378	2547	-7.1
Mirzapur	83324	84711	-1.6	212457	215755	-1.5	2548	2547	0.0
Sonbhadra	37974	38873	-2.3	102488	105697	-3.1	2699	2718	-0.7

* PC indicates per cent change

 Table 4: Per cent change in District wise average area sown (ha), production (tons) and yield (kg ha⁻¹) of Maize during El Nino year compared to normal years of Eastern Uttar Pradesh (1981 to 2016).

Nome of Districts		Area		I	Production		Yield		
Name of Districts	El Nino	Normal	PC*	El Nino	Normal	PC	El Nino	Normal	PC
Jaunpur	42345	43085	-1.7	64728	66654	-2.9	1527	1546	-1.2
Ghazipur	615	628	-2.1	540	622	-15.1	878	991	-12.8
Ballia	27896	28303	-1.4	52863	53776	-1.7	1894	1900	-0.3
Maharajganj	43	42	2.3	83	83	0.0	1930	1927	0.1
Gorakhpur	2355	2459	-4.4	1046	1124	-7.4	443	457	-3.1
Deoria	5118	5278	-3.1	10745	11272	-4.9	2098	2133	-1.6
Basti	2455	2550	-3.8	2157	2249	-4.2	878	882	-0.4
Siddharthnagar	408	415	-1.7	355	366	-3.0	870	882	-1.3
Azamgarh	5364	5554	-3.5	8645	8998	-4.0	1612	1620	-0.4
Mau	291	298	-2.4	545	552	-1.2	1872	1853	1.0
Faizabad	1345	1463	-8.7	2246	2468	-9.8	1667	1687	-1.1
Gonda	42864	45982	-7.2	51487	55821	-8.4	1201	1213	-0.9
Bahraich	74975	77445	-3.2	122482	133671	-9.1	1632	1726	-5.7
Sultanpur	4237	4395	-3.7	7118	7414	-4.1	1678	1686	-0.4
Barabanki	3446	3546	-2.9	5731	5984	-4.4	1663	1686	-1.3
Varanasi	2633	2898	-10.0	4586	5142	-12.1	1740	1773	-1.8
Mirzapur	1042	1182	-13.4	1437	1773	-23.3	1380	1500	-8.6
Sonbhadra	13096	13854	-5.7	11148	12926	-15.9	851	933	-9.6

* PC indicates per cent change

Table 5: Per cent change in District wise average area sown (ha), production (tons) and yield (kg ha⁻¹) of Wheat during El Nino year compared to normal years of Eastern Uttar Pradesh (1981 to 2016).

Nome of Districts		Area		Р	roduction		Yield		
Name of Districts	El Nino	Normal	PC*	El Nino	Normal	PC	El Nino	Normal	PC
Jaunpur	204271	207668	-1.6	711468	735146	-3.3	3482	3542	-1.7
Ghazipur	164510	166213	-1.0	488249	494151	-1.2	2967	2973	-0.2
Ballia	134970	136892	-1.4	483479	495067	-2.3	3582	3616	-0.9
Maharajganj	143214	145442	-1.5	502984	515741	-2.5	3512	3546	-1.0
Gorakhpur	190113	192243	-1.1	793491	814341	-2.6	4173	4236	-1.5
Deoria	151795	153401	-1.0	478974	482139	-0.7	3155	3143	0.4
Basti	116624	119616	-2.5	462484	471766	-2.0	3964	3944	0.5
Siddharthnagar	156348	158257	-1.2	607508	629705	-3.5	3885	3979	-2.4
Azamgarh	231396	235095	-1.5	784628	808724	-3.0	3390	3440	-1.5
Mau	93975	95373	-1.5	340141	352975	-3.6	3619	3701	-2.2
Faizabad	105742	109263	-3.2	398975	412905	-3.4	3773	3779	-0.2
Gonda	151356	154304	-1.9	450525	463529	-2.8	2976	3004	-0.9
Bahraich	164214	167792	-2.1	600794	629399	-4.5	3658	3751	-2.5
Sultanpur	112464	114555	-1.8	450486	461653	-2.4	4004	4031	-0.6
Barabanki	165120	168346	-1.9	655046	677088	-3.3	3967	4022	-1.4
Varanasi	68953	69363	-0.6	231185	234527	-1.4	3352	3381	-0.9
Mirzapur	92589	94546	-2.1	272475	278692	-2.2	2942	2948	-0.2
Sonbhadra	53581	54273	-1.2	125234	127922	-2.1	2337	2357	-0.8

* PC indicates per cent change

 Table 6: Per cent change in District wise average area sown (ha), production (tons) and yield (kg ha⁻¹) of Chickpea during El Nino year compared to normal years of Eastern Uttar Pradesh (1981 to 2016).

Nome of Districts		Area		I	roduction		Yield		
Name of Districts	El Nino	Normal	PC*	El Nino	Normal	PC	El Nino	Normal	PC
Jaunpur	4987	5050	-1.2	7124	7482	-5.0	1426	1481	-3.8
Ghazipur	4117	4262	-3.5	7042	7385	-4.8	1710	1730	-1.1
Ballia	3145	3338	-6.1	5261	5600	-6.4	1672	1675	-0.1
Maharajganj	4	3	25	4	3	25	1000	1060	-6.0
Gorakhpur	348	351	-0.8	376	373	0.8	1080	1065	1.4
Deoria	111	110	0.9	119	117	1.7	1070	1065	0.4
Basti	918	909	1.0	900	973	-8.1	980	1071	-8.5
Siddharthnagar	20	20	0.0	22	22	0.0	1047	1071	-2.2
Azamgarh	3141	3223	-2.5	3301	3391	-2.7	1050	1055	-0.4
Mau	1348	1426	-5.5	1421	1500	-5.3	1054	1052	0.2
Faizabad	1455	1558	-7.0	1048	1173	-11.9	719	754	-4.6
Gonda	641	650	-1.4	624	681	-8.4	973	1048	-7.2
Bahraich	305	306	-0.3	241	321	-33.1	790	1042	-31.8
Sultanpur	1879	1966	-4.6	1346	1483	-9.2	716	754	-5.0
Barabanki	746	779	-4.2	510	585	-14.7	683	754	-9.4
Varanasi	1856	1926	-3.6	2697	2876	-6.2	1453	1490	-2.5
Mirzapur	12983	13805	-6.3	17977	19558	-8.1	1384	1417	-2.3
Sonbhadra	10452	11298	-7.5	14402	15574	-7.5	1377	1378	-0.1

Summary and Conclusion

The inter-seasonal and intra-seasonal variability in weather is believed in recent years to outsmart the abilities of climatologist. Analysis of long term data suggests an inverse relationship between El Nino and SW monsoon rainfall. Agricultural production and productivity of the region during the El Nino years; As the S-W monsoon rainfall and annual rainfall are likely to less than normal in the region. Short duration crops and varieties as main crops/intercropping system can be adopted in the region. Productivity of rabi crops can be improved by judicious use of fertilizers and adoption of insect pest & diseases control during the early stages of its growth. In those districts where ever rice yields are likely to decline, rice may be cultivated under System of Rice Intensification (SRI) method during kharif season. Plantation crops like fruit and timber plants are likely to yield decline due to decrease of pre- monsoon rainfall and therefore moisture conservation practices need to be adopted. Vegetable production during summer season is likely to get affected and production can be sustained by promoting pre-urban olericulture and use of shade nets. As the data considered uptill now indicates greater vulnerability of crop production during years with strong and moderate El Nino events, formers have to be cautioned.

Reference

- 1. Bhuvaneswari K, Geethalakshmi V, Lakshmanan A, Srinivasan R Sekhar NU. The impact of El Nino/Southern oscillation on hydrology and Rice productivity in the Cauvery Basin, India: Application of the soil and water assessment tool, Weather and Climate Extremes 2013;2:39-47.
- 2. Calderon O, Wright SJ, Seasonal El. Nino and longer changes in flower and seeds production in a moist tropical forest. Wiley Online Library Ecology Latter, 2005, 9(1).
- Deng X, Huang J, Qiao F, Rosamond L Naylor, Walter P, Falcon Marshall B *et al.* Impacts of El Nino-Southern Oscillation events on China's rice production. J Geogr. Sci 2010;20:(3-16).
- 4. Devilal. Impact of El-Nino and La-Nino on rainfall variability in South Western Punjab. Abstract published in proceeding of International Symposium on "Advances in Agrometeorology for Managing Climatic Risks of

Farmers" (INAGMET-2019) held at during 11-13 February, 2019 at New Delhi, 2019, 73.

- Dhyani RBBL, Kumar N, Tamradhwaj. Rainfall intensity-duration-return period equations and nomographs of Andhra Pradesh. Indian Journal of Dryland Agricultural Research and Development 2002;17(1):63-73.
- Dhyani RB, Kumar BL N, Tandon R. Rainfall intensityduration-return period equations and nomographs for Tamil Nadu. Madras Agricultural Journal 2001;88(4/6):203-210.
- 7. Duhan D, Pandey A, Srivastava P. Rainfall variability and its association with El Nino Southern Oscillation in Tons River Basin, India. Meteorology and Atmospheric Physics, 2017.
- Kumar B Ajith, Vysakh, A. Impact of El Niño on Crop Productivity in Kerala, Research Journal of Agricultural Sciences 2018;9(5):1041-1045.