

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 www.phytojournal.com JPP 2020; 9(5): 933-937 Received: 23-06-2020 Accepted: 28-07-2020

Shreishtha Singh

Department of Tree Improvement and Genetic Resources, Y.S Parmar university of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India

Dr. Tara Gupta

Principal Scientist, Department of Tree Improvement and Genetic Resources, Y.S Parmar university of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India

Dr. Sanjeev Thakur

Professor and Head, Department of Tree Improvement and Genetic Resources, Y.S Parmar university of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India

Dr. RK Gupta

Professor, Department of Tree Improvement and Genetic Resources, Y.S Parmar university of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India

Corresponding Author: Shreishtha Singh

Department of Tree Improvement and Genetic Resources, Y.S Parmar university of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India

Assessment of genetic variability in *Acacia* catechu willd

Shreishtha Singh, Dr. Tara Gupta, Dr. Sanjeev Thakur and Dr. RK Gupta

DOI: https://doi.org/10.22271/phyto.2020.v9.i5m.12352

Abstract

The present investigation entitled "Assessment of genetic Variability in *Acacia catechu* Willd." was carried out in the Department of Tree Improvement and Genetic Resources, Y.S Parmar University of Horticulture and Forestry. Field survey was carried out across the populations of *Acacia catechu* throughout HP to select well represented ten seed sources *viz.* S₁ (Badlech), S₂ (Dhaulakuan) S₃ (Maryog) S₄ (Bhojnagar) S₅ (Dilman) S₆ (Subathu) S₇ (Hamirpur) S₈ (Kangra) S₉ (Jacch) and S₁₀ (Bilaspur). The seed collection from individual trees was done to study variability status of individual mother trees selected. Progenies of individual tree were raised in Randomized Block Design to assess growth performance with respect to seedling height, collar diameter and number of branches and number of leaves. The data analyzed by RBD revealed that there was significant variation between seed sources was observed. Significant high gain obtained for variation between most of the seed sources on mean value basis. Similarly progeny performance revealed significant variation within seed source, suggesting scope for single tree selection.

Keywords: Acacia catechu Willd., nursery studies, randomized block design

Introduction

Acacia catechu Willd. Is small to moderate sized tree with light feathery crown. Pods are 10-15 cm long, dark brown, shining (mature), it is found in greater parts of India except in very humid and temperate regions. It is the characteristics tree of Khair- Sisso forest, very dry Teak forest, dry Sal bearing forest. In Himachal Pradesh, Acacia catechu is widely distributed in Mandi, Hamirpur, Kangra, Solan, Sirmaur, Una, Shimla and Bilaspur districts below 1300 meters elevation above mean sea levels [1].

The most important product is katha obtained from the chips of heartwood using hot water extraction method. Seeds of *Acacia catechu* are very good source of protein. *Acacia catechu* extract is used in paan (chewing betel leaf) leaves and branches are also food of goats and other animals. *Acacia catechu* contains tannic acid which causes the tanning of protein in leather industries.

Genetic variation is essential for the long term survival of a species by developing consistency in changed environmental conditions for better adaptability. The amount of genetic variation available within species also determines the potential for improving species through suitable breeding programmes. The seeds being the key carrier of the genetic package, when sown to raise the seedlings under a particular environment, express the variability in totality. Magnitude of genetic variation, spatial distribution of genotype and breeding systems of the population influence and contribute towards genetic composition and quality of the seed collected for tree improvement programme.

Material and methods

Survey was conducted depending upon the distribution of species, 10 seed sources were selected from Himachal Pradesh depending upon the distribution and abundance of species.

Selected seed sources of Acacia catechu Willd.

S. No	Source code	Source name	District	Location
1.	S_1	Badlech	Solan	Badlech
2.	S_2	Dhaulakuan	Sirmour	Dhaulakuan
3.	S_3	Maryog	Solan	Mallah
4.	S_4	Bhojnagar	Solan	Bhojnagar
5.	S_5	Dilmon	Sirmour	Dilmon
6.	S_6	Subathu	Solan	Subathu
7.	S_7	Hamirpur	Hamirpur	Nalti
8.	S_8	Kangra	Kangra	Banoi
9.	S ₉	Jachh	Kangra	Jassur
10.	S ₁₀	Bilaspur	Bilaspur	Nauni

Seeds collected from different seed sources were sown in polybags in glasshouse and raised in RBD design. Subsequent irrigation was given as and when required. Individual trees from seed sources are raised under 3 replications. The growth performance of one year age were recorded for the following morphometric traits. Height of seedling was measured from five seedlings per replication from ground level to apex with the help of scale. Collar diameter was measured from five seedlings per replication with the help of digital calliper at collar region.

Number of branches was counted from five seedlings per replication and noted down. Number of leaves/plant counted and noted down. The root length was recorded from the collar region to the tip of main root using scales. Five leaves per plant were taken, the leaf area was recorded with the help of

leaf area meter.

Statistical analysis: The data obtained were subjected to analysis using RBD design. The analysis for each parameter was carried out and the analysis of variance (ANOVA) table and genetic estimates were also estimated.

Results and Discussion Collar diameter (mm)

The seedling obtained from seeds of S_8 (Kangra) seed source has maximum collar diameter with mean value as 1.97 mm which was statistically at par with S_7 (Hamirpur) (1.71) and S_{10} (1.65), where as minimum collar diameter was obtained from S_5 (Dilman) with mean value of 1.15 mm which statistically at par with S_3 (Maryog) (1.19) and S_{10} (1.65).

Table 1: Variation in seedling traits between different seed sources of Acacia catechu Willd. After one year growth under nursery conditions

Nursery traits										
Seed Source	Site	Collar diameter(mm)	Seedling height(cm)	Number of leaves	Number of branches					
(S_1)	Badlech	1.27	27.77	8.57	0.45					
(S_2)	Dhaulakuan	1.28	24.48	8.37	0.48					
(S_3)	Maryog	1.19	17.06	6.74	0.16					
(S ₄)	Bhojnagar	1.38	27.25	10.92	0.60					
(S_5)	Dilman	1.15	20.37	10.16	0.30					
(S ₆)	Subathu	1.52	20.83	9.77	0.67					
(S ₇)	Hamirpur	1.71	21.92	10.29	0.20					
(S ₈)	Kangra	1.97	20.00	9.33	0.25					
(S ₉)	Jachh	1.30	29.17	8.33	0.42					
(S_{10})	Bilaspur	1.65	21.41	8.73	0.15					
	Mean	1.44	23.03	9.12	0.39					
	CD	0.54	6.52	1.34	0.38					

Seedling height (cm)

The seedlings obtained from seeds of S_9 (Jachh) has maximum seedling height among all seed sources with mean value of 29.17 cm which was statistically at par with S_1 (27.77), S_4 (27.25 cm), whereas minimum seedling height was obtained from S_3 (Maryog) with mean value of 17.06 cm which was statistically at par with S_8 (20.00), S_5 (20.37).

Number of leaves

The seedling obtained from S_4 (Bhojnagar) recorded maximum number of leaves with mean value 10.92 which was statistically at par with S_7 (10.29), S_5 (10.16), whereas minimum number of leaves was 6.74 recorded from S_3 (Maryog) with mean value 6.74 which was statistically at par with S_9 (8.33) and S_{10} (8.73).

Number of branches

Maximum mean value for number of branches was obtained from S_6 (Subathu) with mean value of 0.67 which was statistically at par with S_4 (0.60), S_2 (0.48) whereas minimum mean value for number of branches was obtained from S_{10} (Bilaspur) with mean value of 0.15 which was statistically at par with S_3 (0.16) and S_7 (0.20).

Seedling height (cm)

For seedling height shown that all seed sources are non significant except S_9 . With respect to growth parameters S_7 (Hamirpur) seed source proved to be most outstanding one among the all seed sources, whereas, S_8 (Kangra) and S_9 (Jachh) showed most promising results.

Table 2: Variation in seedling height (cm) after one year traits between different seed sources of *Acacia catechu* Willd. After one year growth under nursery conditions

	Seed source										
Tree No	Badlech	Dhaulakuan	Maryog	Bhojnagar	Dilman	Subathu	Hamirpur	Kangra	Jachh	Bilaspur	
Tree No.	S ₁	S_2	S ₃	S ₄	S ₅	S 6	S ₇	S ₈	S ₉	S ₁₀	
T_1	36.33	25.70	19.40	18.83	19.83	20.30	22.30	17.57	21.43	22.20	
T_2	31.07	22.90	23.57	26.67	24.67	23.97	20.63	19.60	17.70	24.00	
T ₃	33.13	25.90	20.30	21.87	21.40	20.90	21.53	22.13	19.63	25.60	
T ₄	26.97	18.67	19.97	27.33	16.50	21.50	20.00	22.43	25.20	19.27	
T ₅	29.60	24.70	2.67	29.17	17.00	16.03	21.70	17.20	23.73	17.87	
T ₆	26.63	28.67	19.63	29.27	13.67	15.20	24.27	25.60	22.87	23.07	
T 7	22.67	28.67	22.77	31.30	22.53	20.67	21.07	19.17	21.40	18.20	
T_8	23.47	18.10	9.33	31.80	25.50	20.23	24.93	20.00	25.93	20.93	
T 9	22.20	25.27	23.17	25.73	19.00	24.83	24.67	17.87	23.07	21.56	
T_{10}	25.60	26.20	9.83	30.50	23.60	24.67	18.07	18.40	90.73	21.43	
Mean	27.77	24.48	17.06	27.25	20.37	20.83	21.92	20.00	29.17	21.41	
	NS	NS	NS	NS	NS	NS	NS	NS		NS	
CD _{0.05}	CD _{0.05} Between Seed Source								:	6.52	
			•	Within seed s	sources	•	•		:	NS	

Collar diameter (mm)

Table 3 shown that all seed sources are significant except S_8,S_5,S_3 and S_7 . In S_1 (Badlech) seed source maximum collar diameter was recorded in T7 with mean value of 1.49 mm which was statistically at par with T₅ (1.43) and T₃ (1.41), whereas minimum collar diameter was recorded from T2 with mean value of 1.06 mm which was statistically at par with T₁ (1.09) and T_6 and T_8 (1.21). In S_2 (Dhaulakuan) seed source maximum collar diameter was recorded for T7 with mean value of 1.98 mm which was statistically at par with T₉ (1.74) and $T_8(1.59)$, whereas minimum collar diameter was recorded for T₂ with mean value 0.84 mm which was statistically at par with T_3 (0.97) and T_1 (1.01). In S_3 (Maryog) maximum seedling height was recorded for T₇ with mean value of 1.96 mm which was statistically at par with T₅ (1.62) and T₂ (1.56), whereas minimum collar diameter was recorded for T₅ with mean value 0.13 mm was statistically at par with T_{10} (0.45) and T_8 (0.49). In S_4 (Bhojnagar) seed source maximum collar diameter was recorded for T_3 with mean value of 1.75 mm which was statistically at par with T_5 (1.74) and T_2 (1.54), whereas minimum collar diameter was recorded for T_1 with mean value 0.80 mm which was statistically at par with T_7 (1.20) and T_8 (1.25).

In S_5 (Dilman) seed source maximum collar diameter was recorded for T_{10} with mean value of 2.02 mm which was statistically at par with T_8 (1.70) and T_7 (1.53), whereas minimum collar diameter was recorded for T_1 with mean value 0.81 mm which was statistically at par with T_2 (0.89) and T_9 (0.97). In S_6 (Subthau) seed source maximum collar diameter was recorded for T_9 with mean value of 2.73 mm which was statistically at par with T_4 (1.75) and T_6 (1.74), whereas minimum collar diameter was recorded for T_2 with mean value 0.79 mm which was statistically at par with T_3 (1.04) and T_7 (1.28).

Table 3: Variation in collar diameter (mm) after one year traits between different seed sources of *Acacia catechu* Willd. after one year growth under nursery conditions

	Seed source										
Tree	Badlech	Dholakuan	Maryog	Bhojnagar	Dilman	Subathu	Hamirpur	Kangra	Jachh	Bilaspur	
No.	S_1	S_2	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉	S ₁₀	
T_1	1.09	1.21	1.41	0.80	0.81	1.67	1.34	1.60	1.66	0.90	
T_2	1.06	0.84	1.56	1.54	0.89	0.79	1.83	1.68	1.67	2.05	
T ₃	1.41	0.97	1.32	1.75	1.41	1.04	2.64	2.97	0.88	1.81	
T ₄	1.24	1.01	1.62	1.33	0.42	1.75	1.86	2.21	1.22	1.43	
T ₅	1.43	1.14	0.13	1.74	0.52	1.53	1.35	1.92	1.48	2.02	
T ₆	1.21	1.09	1.53	1.33	1.25	1.74	2.19	1.31	1.42	2.04	
T ₇	1.49	1.98	1.96	1.20	1.53	1.28	1.27	2.17	0.98	1.63	
T ₈	1.21	1.59	0.49	1.25	1.70	1.34	1.67	2.12	1.39	1.87	
T9	1.14	1.74	1.44	1.43	0.97	2.73	1.50	1.61	1.24	1.70	
T ₁₀	1.37	1.20	0.45	1.41	2.02	1.31	1.43	2.07	1.06	1.02	
Mean	1.27	1.28	1.19	1.38	1.15	1.52	1.71	1.97	1.30	1.65	
	NS	NS		NS		NS			NS	NS	
CD _{0.05}	CD _{0.05} Between Seed Source								:	0.54	
				Within seed	sources	·				1.71	

In S₇ (Hamirpur) seed source maximum collar diameter was recorded for T₃ with mean value of 2.64 mm which was statistically at par with T₆ (2.19) and T₄ (1.86), whereas minimum collar diameter was recorded for T1 with mean value 1.34 mm which was statistically at par with T_5 (1.35) and T_6 (1.27). In S_8 (Kangra) seed source maximum collar diameter was recorded for T₃ with mean value of 2.97 mm which was statistically at par with T_4 (2.21) and T_7 (2.17), whereas minimum collar diameter was recorded for T₆ with mean value 1.31 mm which was statistically at par with T₁ (1.60) and T_8 (1.61). In S_9 (Jachh) seed source maximum collar diameter was recorded for T₂ with mean value of 1.67 mm which was statistically at par with $T_1(1.66)$ and $T_4(1.48)$, whereas minimum collar diameter was recorded for T₃ with mean value 0.88 mm which was statistically at par with T7 (0.98) and T_5 (1.06). In S_{10} (Bilaspur) seed source maximum source maximum collar diameter was recorded for T2 with mean value of 2.05 mm which was statistically at par with T₆ (2.04) and T_5 (2.02), whereas minimum collar diameter was recorded for T₁ with mean value 0.90 mm which was statistically at par with $T_{10}(1.02)$ and $T_4(1.43)$.

In S_1 (Badlech) seed source, seedlings of trees T_7 , T_5 , T_3 performed well, hence may be selected for further selection. In S_2 (Dhaulakuan) seed source seedlings of trees T_7 , T_8 performed well, hence may be selected for further selection. In S_3 (Maryog) seed source seedlings of trees T_7 , T_8 performed well, hence may be selected for further selection.

In S_4 best trees are T_3 , T_5 and T_2 , where as in S_5 best progenies are obtained from T_{10} , T_8 and T_7 . In S_6 best trees are T_9 , T_4 and T_6 , where as in S_7 best trees are T_3 , T_6 and T_4 . In S_8 promising progenies are obtained from T_3 , T_4 and T_7 , where as in S_9 best trees are T_2 , T_1 and T_4 . In S_{10} best trees are T_2 , T_6 and T_5 .

Number of leaves

Study on character number of leaves shown that all seed sources are non-significant except S₄ and S₅. In S₁ (Badlech) seed source maximum number of leaves was recorded in T2 with mean value of 10.73 which was statistically at par with $T_5(10.31)$ and $T_3(9.80)$, where as minimum number of leaves was recorded from T₆ with mean value of 6.78 which was statistically at par with T_8 (6.85) and T_7 (7.45). In S_2 (Dhaulakuan) seed source maximum number of leaves was recorded for T₇ with mean value of 10.77 which was statistically at par with T_8 (9.40) and T_4 (9.25), whereas minimum number of leaves was recorded for T₅ with mean value 6.28 which was statistically at par with T_3 (7.58) and T_{10} (7.83). In S₃ (Maryog) maximum number of leaves was recorded for T_{10} with mean value of 8.71 which was statistically at par with T_1 and T_3 (8.53) and T_4 (7.97), whereas minimum number of leaves was recorded for T₆ with mean value 3.33 was statistically at par with T_9 (3.40) and T_6 (6.25).

Table 4: Variation in number of leaves between different seed sources of Acacia catechu Willd. after one year growth under nursery conditions

	Seed source									
Tree No.	Badlech	Dholakuan	Maryog	Bhojnagar	Dilman	Subathu	Hamirpur	Kangra	Jachh	Bilaspur
	S_1	S_2	S_3	S ₄	S_5	S_6	S_7	S_8	S ₉	S ₁₀
T_1	8.20	8.63	8.53	4.17	13.67	11.33	11.57	7.83	6.43	8.93
T_2	10.73	8.13	6.93	9.90	8.50	9.38	10.37	9.47	7.20	9.17
T ₃	9.80	7.58	8.53	8.43	12.27	8.01	8.83	11.13	9.22	8.20
T ₄	8.64	9.25	7.97	10.10	8.75	9.17	10.37	7.87	8.55	9.65
T ₅	10.31	6.28	6.17	12.95	7.50	10.47	9.19	11.67	6.89	10.50
T ₆	6.78	7.90	3.33	11.83	7.83	9.42	10.44	8.02	9.97	7.92
T 7	7.45	10.77	6.25	12.60	10.20	8.23	10.93	10.30	8.08	9.67
T ₈	6.85	9.40	7.62	12.40	12.33	9.33	9.30	10.52	9.12	7.20
T 9	9.41	7.89	3.40	15.33	12.67	10.33	12.30	7.92	8.43	6.75
T ₁₀	7.55	7.83	8.71	11.47	7.83	12.00	9.57	8.62	9.45	9.33
Mean	8.57	8.37	6.74	10.92	10.16	9.77	10.29	9.33	8.33	8.73
	NS	NS	NS			NS	NS	NS	NS	NS
CD _{0.05} Between Seed Source		ce	:	1.34						
	Within seed sources				:	4.24				

In S_4 (Bhojnagar) seed source maximum number of leaves was recorded for T_9 with mean value of 15.33 which was statistically at par with T_5 (12.95) and T_7 (12.60), whereas minimum number of leaves was recorded for T_1 with mean value 4.17 which was statistically at par with T_3 (8.43). In S_5 (Dilman) seed source maximum number of leaves was recorded for T_1 with mean value of 13.67 which was statistically at par with T_9 (12.67) and T_8 (12.33), whereas minimum number of leaves was recorded for T_5 with mean value 7.50 which was statistically at par with T_6 T_{10} (7.83) and T_2 (8.50).

In S_1 promising trees for further selection are T_2 , T_5 and T_3 , where as in S_2 promising trees are T_7 , T_8 and T_4 . In S_3 best trees are T_{10} , T_1 and T_3 , where as in S_4 best trees are T_9 , T_5 , T_7 . In S_5 promising progenies from trees are obtained from T_1 , T_9 and T_8 where as in S_6 promising progenies are obtained from trees T_{10} , T_1 and T_5 . In S_7 best trees are T_1 , T_9 and T_2 where as in S_8 promising trees are T_5 , T_3 and T_8 . In S_9 best

trees are T_6 , T_{10} and T_8 where as in S_{10} best trees are in T_5 , T_7 and T_4 . The maximum mean value for number of leaves obtained from S_4 (10.92) and minimum mean value for no. of leaves obtained from S_3 (6.74).

Number of branches

Table 5 shown that all sources are significant except S_1 , S_3 , S_4 and S_8 . In S_1 maximum no. of branches belong to T_1 with mean value of 0.87 where as in S_2 maximum number of branches belong to T_1 0.67. In S_3 maximum no. of branches belong to T_4 0.42.In S_4 maximum no. of branches found in T_9 with mean value of 1.35 and minimum no. of branches belong to T_6 0.20 where as in S_5 maximum no. of branches belong to T_1 with mean value of 1.00. in S_6 maximum no. of branches belong to tree T_1 with mean value of 0.97,where as in S_7 maximum no of branches belong to T_1 with mean value of 0.57.

Table 5: Variation in number of branches after one year traits between different seed sources of *Acacia catechu* Willd. after one year growth under nursery conditions

	Seed source									
Tree No.	Badlech	Dholakuan	Maryog	Bhojnagar	Dilman	Subathu	Hamirpur	Kangra	Jachh	Bilaspur
	S_1	S ₂	S ₃	S ₄	S 5	S_6	S 7	S ₈	S ₉	S ₁₀
T_1	0.80	0.67	0.20	0.33	1.00	0.97	0.58	0.27	0.00	0.00
T ₂	0.42	0.50	0.13	0.50	0.00	0.60	0.42	0.00	0.00	0.00
T ₃	0.43	0.08	0.20	0.23	0.33	0.00	0.30	0.20	0.00	0.13
T ₄	0.23	0.58	0.42	0.18	0.37	0.28	0.53	0.48	0.37	0.43
T ₅	1.17	0.07	0.08	0.57	0.17	0.37	0.00	0.67	0.68	0.08
T ₆	0.17	0.00	0.08	0.20	0.00	0.25	0.00	0.00	0.47	0.00
T ₇	0.58	0.45	0.27	0.83	0.33	0.34	0.00	0.33	0.57	0.08
T ₈	0.27	1.93	0.00	1.13	0.00	0.42	0.00	0.00	0.75	0.36
T9	0.00	0.00	0.17	1.35	0.27	0.08	0.00	0.48	0.57	0.22
T_{10}	0.44	0.50	0.00	0.65	0.50	0.63	0.17	0.08	0.77	0.17
Mean	0.45	0.48	0.16	0.60	0.30	0.39	0.20	0.25	0.42	0.15
	NS		NS	NS				NS		
CD _{0.05} Between Seed Source		ce	:	NS						
		Within	seed source	es	:	0.40				

In S_8 maximum no of branches belong to T_9 with mean value 0.48 in S_9 maximum no. of branches belong to T_{10} with mean

value of 0.77 and in S_{10} maximum number of branches belong to T_4 with mean value of 0.43.

Table 6: Genetic estimates after after one year traits between different seed sources of *Acacia catechu* Willd. after one year growth under nursery conditions

Nursery characters	GCV%	PCV%	Heritability%	Genetic advance	Genetic gain %
Seedling height	17.41	58.27	9	2.48	10.8
Collar diameter	24.23	45.84	28	0.38	26.44
No. of branches	6.93	13.2	28	0.46	7.61
No. of leaves	14.64	32.39	2	1.21	13.34

Genotypic coefficient of variability (%): Maximum value was recorded for collar diameter with value 24.23 percent followed by seedling height 17.41. Phenotypic coefficient of variability Maximum value of 58.27 percent was recorded for seedling height which was followed by collar diameter having value of 45.84 percent and no. of leaves with value of 32.39 percent, whereas minimum value was recorded for no. of branches with value 13.20 percent. Heritability is maximum for seedling height and no. of branches. Maximum genetic advance is obtained for seedling height and no. of leaves. Maximum value of genetic gain 26.44 percent was recorded for collar, whereas minimum value was recorded for no. of branches with value 7.61 percent.

Discussion

Maximum mean value seedling height was obtained from s9 (29.17) and minimum seedling height was obtained from s₃ (17.06). A study [2] revealed that plant height, based diameter, number of branches and volume were highly significant which indicate higher variability, contradictorily some found [3] no significant differences among the three Acacia species were observed with regard to the determined growth parameters and inter-specific difference was found in seedlings root dry weight. Maximum mean value collar diameter was obtained from s₈ (1.97) and minimum collar diameter was obtained from s₆ is 1.15. The maximum mean value for number of leaves obtained from S4 (10.92) and minimum mean value for no. of leaves obtained from S₃ (6.74) some [4] results exhibited wide differences among the Acacia species in morphological traits such as number of leaves, seed length, pinna length, leaf base and top length. In S₈ maximum no of branches belong to T₉ with mean value 0.48 in S_9 maximum no. of branches belong to T_{10} with mean value of 0.77 and in S₁₀ maximum number of branches belong to T₄ with mean value of 0.43. In ^[5] Acacia nilotica for plant height, clear bole height, collar diameter number of branches, first, second and third inter branch distances and angles of first, second and third branches with reference to main stem.

Conclusion

Higher values for phenotype coefficient of variation as compared to genotypic coefficient of variation in seedling growth characters, indicating that the characters are greatly influenced by the field environment. The heritability and expected genetic gain were also observed to be high to moderate for these characters ^[6]. Heritability mean of 0-0.3 is low, 0.4-0.6 moderate, and 0.6 and above high. Seed sources S_4 (Bhojnagar), S_7 (Hamirpur), S_8 (Kangra), S_9 (Jachh) can be selected for further improvement work on the basis of nursery seedling growth traits.

References

- Chowdhery HJ, Wadhwa BM. Flora of Himachal Pradesh: Analysis. Botanical Survey of India, Dehra Dun, 1984, I-III.
- Jayaprakash J, Rathore AC, Raizada A, Charan Singh, Dasthagir MG. Evaluating Biometric Traits for Selecting

- Elite Trees in *Acacia nilotica* (Var. Indica) Based on Progeny Trials in Tropical India. Indian Forester. 2010; 136(5):652-660.
- 3. Fadl EI, Mohamed A. Growth performance and physiological characteristics of seedlings of six tropical dry land forest tree species in Sudan. Journal of Natural Resources and Environmental Studies. 2013; 1(2):25-33.
- 4. Kamal Elkhalifa F, Ibrahim M. Aref. Morphological studies on fourteen *Acacia* species seedlings grown in Saudi Arabia Res. Bult., No. (122), Agric. Res. Center, King Saud Univ, 2004, 5-11.
- 5. Bagchi SK. Seed source variation in *Acacia nilotica*: Genetic divergence in eight month old seedlings Annals of Forestry. 1999; 7(1):45-55.
- 6. Robinson HF, Comstock PE, Harvey PH. Genotypic and phenotypic correlations in corn and their implications in selections. Agron. J. 1949; 43:282-287.