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Abstract 

Soil tillage disruption is a major cause of loss of organic matter and a decline in the number and stability 

of soil aggregates as natural habitats are transformed into agriculture. Compared to conventional tillage, 

zero tillage cropping systems typically demonstrate increased aggregation and soil organic matter. To 

feed the rising population on a sustainable basis without degrading natural resources, there is a need to 

increase farm productivity and total food production. Although the country's green revolution 

technologies implemented during 1966-67 led to food protection, intensive agriculture, insufficient and 

imbalanced use of fertilizers, high yielding crop varieties, the use of heavy machinery, excess tillage, 

etc., resulted in degradation of soil health and quality for more than five decades and increased pollution 

of air, soil and water. There is a great lack of a systematic approach to relating tillage practices to 

chemical soil properties. The most significant pillar of conservation farming is zero tillage. The need for 

an hour is conservation farming. It is a win-win operation for farmers as well as for the environment. The 

goal of Tillage was to establish a soil environment conducive to plant growth, but to have negative 

effects on soil resources, structure and eventually on the environment in the long run. Zero tillage has the 

ability to enhance the chemical properties and environment of the soil in the long run. Keeping all of 

these under consideration, this analysis is compiled to create a perfect tillage scheme, i.e. zero tillage, 

which eliminates the adverse effects of tillage and retains soil resources and eventually contributes to 

sustainable agriculture. The magnitude of changes in soil organic matter in response to zero tillage, 

however, differs between soils and the stabilisation mechanisms of organic matter in zero tillage systems. 

 

Keywords: Zero tillage, conventional tillage, soil organic carbon, dissolved organic carbon, light and 

heavy fractions 

 

Introduction 
Compared with conventional tillage, the deposition of soil organic matter under zero tillage 
confers major increases in soil quality, soil fertility and carbon sequestration. For some time, 
mechanisms by which zero tillage reduces the decomposition of soil organic matter have been 
established (Paustian et al., 1997) [45], but the ultimate mechanisms have not been well 
elucidated. It has been identified that their decomposition rate is reduced by the inclusion of 
organic materials within soil aggregates (Elliott and Coleman, 1988) [17]. Increases in 
aggregation were found in zero tillage systems concurrent with increases in organic carbon 
(Six et al., 2000) [58]. A loss of C-rich macroaggregates and a benefit of C-depleted 
microaggregates were found to induce tillage (Six et al., 2000) [58]. However, the overall C loss 
associated with tillage can’t be explained by this reduction in macroaggregates. Six et al. 
(1998, 1999a) [56, 57] proposed that a primary mechanism that induces decreases in soil C is 
increased macroaggregate turnover under traditional tillage. In order to feed the growing 
population on a sustainable basis without degrading natural resources (soil and water) and the 
climate, there is a need to increase farm productivity and total food production. It is estimated 
that by 2050 the world population will be about 9.8 billion and 37 percent of which will reside 
in China and India (UN, 2017), requiring an estimated 59-98 percent rise in food demand 
(Valin et al., 2014) [67], placing more pressure on natural resources. Although green revolution 
technologies implemented in the country during 1966-67 led to food protection, intensive 
cropping, insufficient and imbalanced use of fertilisers, high yielding crop varieties, use of 
heavy machinery, excess lawning, etc., for more than five decades resulted in degradation of 
soil health, decrease in organic matter in the soil, decrease in chemical and physical soil, etc. 
Organic soil carbon is considered an important soil quality index and is considered to be a key 
factor in cycling plant nutrients and improving the physical, chemical and biological properties 
of the soil (Singh et al., 2008) [44]. Furthermore, there is a increasing concern now-a-days about 
elevated atmospheric CO2 concentrations due to industrialization and other Anthropogenic 
activities. 
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Almost three times the carbon contained in vegetation is 
contained in the upper 30 cm soil layer (Powlson et al., 2012) 

[49], which is considered most prone to CO2 loss. Estimates of 
total C sequestration capacity in the world's soils, however, 
vary widely from 0.4 to 1.2 Gt C year-1. There is also the 
ability to increase the stock of C in soils (FAO, 2011). There 
is therefore a increasing concern about the implementation of 
technologies and management practises that have the potential 
to increase the content of organic carbon in the soil. 
Conservation agriculture (CA) has been found to have 
sufficient capacity to improve soil organic carbon and soil 
productivity. In this era of climate change, the CA is a 
resource-saving agricultural crop production system that aims 
to achieve reasonable benefit along with high and sustained 
levels of production while at the same time protecting the 
environment (FAO, 2010) [18]. The three interlinked principles 
of conservation agriculture are: I continuous minimum 
mechanical soil disturbances, (ii) preservation of permanent 
organic soil coverage, and (iii) diversified crop rotations 
(FAO 2010) [18]. One component of conservation agriculture, 
zero tillage, refers to soil management systems that result in 
crop residues covering at least 30 percent of the soil surface 
(Jarecki and Lal, 2003) [28]. Tillage activity, on the other hand, 
is synonymous with soil ploughing with certain instruments 
and implements to monitor weeds and create a favourable soil 
tilth for proper germination of seeds, emergence of seedlings, 
and plant establishment and growth (Lal, 1979; Klute 1982; 
Ahn and Hintze, 1990) [1]. Tillage has been found to compact 
sub-surface soil in the current mechanised agriculture 
scenario, limiting root penetration and production, nutrient 
and water availability, and thus plant growth and yield. The 
mechanical inversion of the soil does not take place when the 
tillage is not used over the years, and hence the soil-plant 
system enters a physical balance. In addition, as a result of 
reduced soil organic carbon, intensive tillage operations 
typically increase soil erosion, environmental contamination 
and soil degradation (Srinivasan et al., 2012) [59]. With the 
advent of herbicides for weed control, several scientists have 
advocated the adoption of zero tillage to minimise organic 
matter oxidation, sub-surface compaction and better soil 
condition for root penetration and proliferation, increasing the 
availability of nutrients and water resulting in better growth 
and yield of pants. Conservation tillage is now considered a 
promising alternative to conventional tillage practise (Teklu, 
2011) [62]. Conservation tillage is a promising alternative to 
traditional tillage practise. As they save energy and provide 
optimal soil conditions for sustainable crop production and 
reduced cultivation costs, conservation tillage practises like 
zero tillage or limited soil disturbance and residue retention 
on the soil surface are becoming economically and 
ecologically viable options. Better root growth and productive 
use of water and nutrients can be encouraged by improved 
soil physical condition. Long-term conservation tillage 
improves the status of soil organic carbon and modifies soil 
pore geometry, which ultimately affects basic physical 
parameters such as bulk density, aggregate stability, water 
retention capacity, etc. However, the effects of conservation 
tillage are highly variable across environment, soil type and 
depth, cropping system, and vary widely with the period of 
adoption.  

 

Impact of zero tillage on soil organic carbon and its 

fractions  

Soil organic carbon 

In soil fertility, soil organic carbon (SOC) plays a crucial role. 

Due to its crucial role in the chemical, physical and biological 

properties of the soil, it is an important measure of soil 

fertility and productivity (Gregorich and Janzen, 1994) [22]. 

For sustainable agro-ecosystems, maintenance of a 

satisfactory level of SOM is therefore necessary. There are 

two ways of increasing SOC: (1) increasing the input of C, or 

(2) reducing the loss and decomposition of SOC. By 

implementing residue management and using conservation 

tillage, carbon production can be increased and decomposition 

decreased (no tillage or limited tillage). However, due to 

elevated background C content and its temporal and spatial 

variability, short and medium-term SOC shifts are difficult to 

detect (Bosatta and Agren, 1994) [7]. Increased atmospheric 

greenhouse gas concentrations and consequent climate change 

have contributed to an overriding interest in organic carbon 

sequestration in agricultural soils. SOC is the primary 

component of soil organic matter (SOM) and is formed on or 

below the soil surface by the decomposition of different 

organic materials. The rate of SOM turnover and 

decomposition is largely determined by the interactions 

between different components of the soil (physical, chemical 

and biological) and the environment, such as temperature and 

humidity (Taylor et al., 2009) [61]. The SOC level can be 

sustained or even increased by better agricultural management 

practises along with other added benefits in terms of better 

physical condition, fertility and soil water storage (Blanco and 

Lal, 2010; Stockmann et al., 2013) [60]. Tillage practises 

mainly carried out for the preparation of seed beds, weed 

control, introduction of residues, play a dominant role in 

reducing the level of SOC and altering the physical conditions 

of the soil (Baker et al., 2007; Victoria et al., 2012) [4, 68]. 

Compared to normal movement of soluble, particulate or 

colloidal carbon, tillage physically integrates the carbon as 

crop residue into the soil. However, the soil aggregates are 

killed by continuous traditional tillage and the covered SOC is 

exposed to the atmosphere, which then undergoes rapid 

decomposition by aerobic microorganisms (Al-Kaisi and Yin, 

2005) [2]. It has been calculated that conventional tillage 

activities have removed about 75% of the SOC inventory of 

the native soil (Lal et al., 2007) [34]. The SOC level of the soil, 

which is a mitigation choice for the level of CO2 in the 

atmosphere, can be increased without laundering. This 

mechanism is called 'carbon sequestration' and the source-sink 

relationship of carbon in cultivated land is influenced by 

various agricultural management practises (Lin et al., 2002) 

[37]. In C-sequestration, SOC turnover time may have a 

dominant function and is influenced by soil mineralogy and 

climatic conditions (rainfall, temperature and radiation). In 

comparison to unfertilized soils, plant root biomass and root 

exudates increase the SOC content of fertilised soils 

(Kuzyakov, 2002; Chaudhary et al., 2012). In the form of 

cover crop under zero tillage, residue mulch or live mulch 

improves the degree of SOC and improves the process of C-

sequestration. Minimal no-tillage soil disturbance favoured 

the formation of macro-aggregates and preserved the intra-

aggregate SOC (Six et al., 2000a) [55]. Due to slow 

decomposition, retained crop residues on the soil surface 

increased the SOC level (Fenget al., 2010; Johansen et al., 

2012; Boeckx et al., 2011; Brouder and Gomez-Macpherson, 

2014; Tits et al., 2014; Chaplot et al., 2015; Guo et al., 2015) 

[8, 23]. Conservation agriculture had a beneficial influence on 

biological activities and/or physical structure development 

such as earthworm macro-aggregates, suggesting a special 

SOC dynamics (Brouder and Gomez-Macpherson, 2014; Tits 

et al., 2014) [8] increased Plaza-Bonilla et al., 2013; Higashi et 

al., 2014; Villami and Nafziger, 2015; Arai et al., 2013) [47]. 

Due to higher oxidation rates, the tillage is known to cause 

rapid loss of SOM material. This results in a degradation of 
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the physical properties of the soil and a potential decline in 

crop production in the long term (Du Preez et al., 2001) [16]. 

With the period of conversion from traditional tillage to no 

tillage, soil organic C and total N were found to increase, 

especially in a few centimetres of surface soil (Bowman et al., 

1999, Hermle et al., 2008) [25]. In shallow or minimum tillage, 

an accumulation of organic matter near the soil surface is 

usually observed due to a decrease in ploughing depth 

(Hernanz et al., 2002; Moreno et al., 2006) [42]. After years of 

CT, even the implementation of no-till management led to a 

rise in SOC across the Great Plains in a wide variety of soils 

and climates (West and Post, 2002; Baker et al., 2007) [4]. In 

arid and semi-arid areas where SOM material is often lost 

because of its harsh climatic conditions, conservation tillage 

has improved the organic matter content and water storage 

(Du Preez et al., 2001) [16]. In semi-arid regions, however, 

variations in soil organic C between traditional and zero 

tillage systems are typically limited since conventional tillage 

is less intensive and shallower than in wet regions (Unger, 

1991) [65]. Gosai et al. (2009) [21] recorded higher organic 

matter content compared to moulboard tillage in zero and 

shallow-tilled plots. After 11 years of continuous cultivation, 

the carbon storage of zero tillage at 0-15 cm surpassed that of 

traditional tillage by 0, 1.6 and 3.9 Mg ha-1 in sandy loam, 

silt loam and clay loam soils, respectively (Campbell et al., 

1996a) [9]. Also reported was the failure of ZT practises to 

increase SOC sequestration relative to CT systems (Ogle et 

al., 2005) [43]. No tillage on the surface has increased SOC 

content in many fine-textured soils at the cost of SOC 

deposited within the rooting zone (Kay and VandenBygaart, 

2002) [31]. Conservation tillage, such as zero tillage, has the 

ability to sustain both soil fertility and crop fertility as it has a 

major effect on the organic carbon content of the soil due to 

crop residue retention. Madari et al. (2005) [39] found that, 

with larger aggregates and more soil organic carbon, zero 

tillage with residue cover had greater aggregate stability. By 

introducing zero tillage, higher soil organic carbon 

sequestration has also been observed (Dick et al., 1991 and 

Panday et al., 2008) [13, 44]. After rice and wheat harvesting, 

the soil organic carbon content in the 0-15 cm soil depth was 

higher under zero tillage than under traditional tillage, but soil 

organic carbon content remained almost unchanged in both 

traditional and zero tillage in the 15-30 cm soil layer after 4 

years of cropping (Bhattacharyya et al., 2008) [5]. Hooker et 

al. (2005) [26] also discovered that residue control had little 

impact on SOC in the surface soil layer (0-5 cm) during 

tillage treatment. Tillage appeared to decrease the SOC 

material, although, as opposed to tomold board ploughed 

treatments, only no till combined with stover return to the soil 

resulted in an increase in SOC in the surface layer. Compared 

to traditional methods, enhanced soil and crop management 

methods, such as reduced tillage, increased SOC (Sainju et 

al., 2007; Zhang et al., 2007; Andruschkewitsch et al., 2013) 

[14, 3]. Long-term zero laying increased the surface layer soil 

carbon stock by 19.0, 34.7 and 38.8 percent over traditional 

laying in sandy loam, loam and clay loam soil over 15 years 

(Singh et al., 2014) [53]. Dong et al. (2009) [14-15] stated that, 

relative to the total SOC, the impact of tillage and residue 

management was greater on SOC fractions, such as dissolved 

organic C, microbial biomass C and particulate organic matter 

C. Compared to traditional methods, improved crop 

management practises, such as no-tillage and straw mulch 

strategies, will lift the SOC and SOC fractions 

(Andruschkewitsch et al., 2013; Blanco-Canqui and Lal, 

2007; Mishra et al., 2010; Sainju et al., 2007) [3, 34]. Zotarelli 

et al. (2005) [69] reported that by influencing soil aggregates 

and aggregate-associated C, soil disturbance showed major 

influences on SOC safety. Freixo et al. ( 2002) [19] found that 

0-5 cm of topsoil organic carbon decreased by 60 percent 

after 13 years of CT farming, while ZT conditions decreased 

by 43 percent. Due to residue accumulation at the soil surface, 

soil organic C storage is always higher under ZT than CT 

(Piovanelliet al., 2006) [46]. Soils administered with ZT change 

SOM, microbial species and nutrient availability and their 

roles (Thomas et al., 2007) [63]. Residues on the soil surface 

are maintained by the no tillage system and the SOC has 

therefore increased compared to intensive tillage systems 

(Kumar et al., 2012) [33]. 

 

Dissolved organic carbon, light and heavy fractions  

The SOC strongly affects the consistency and productivity of 

the soil and can be categorised into fractions based on their 

chemical properties and time of residence (Mc Lauchlan et 

al., 2006). The light fraction of SOC, also known as the labile 

fraction, plays a key role in the understanding of soil quality 

changes (Kapkiyai et al., 1999) [29]. The sand fraction-related 

SOC is a labile pool of C and is thus affected by land use and 

management (Shrestha and Lal, 2007) [34], while the clay 

fraction-related SOC is more stable (heavy fraction) and has 

been found to be altered more by physical and chemical 

processes than by changes in land use. This labile fraction 

(LF) of SOM consists of micro-organisms, plant and soil 

fauna living at various decay levels and the products of their 

decomposition, and of non-humic organic substances which 

can be easily decomposed, such as carbohydrates, 

polysaccharides, proteins, organic acids, amino acids, waxes, 

fatty acids and other non-specific compounds (Poirier et al., 

2005) [48]. The LF consists of a heterogeneous blend of recent 

residues of plants, small animals and micro-organisms that 

may be present at different stages of decomposition. In 

agricultural soils, this pool of soil organic matter is typically 

about many times greater than that of soil microbial biomass 

(Liang et al., 1998) [36]. SOC fractions, including dissolved 

organic C (DOC), microbial biomass C (MBC) and 

particulate organic matter C (POMC), are considered to be 

more susceptible than the total SOC (Dong et al., 2009) [14-15] 

markers of treatment-induced changes. The effects of various 

management activities on labile SOC pools have been 

documented in several studies (Plaza-Bonilla et al., 2013) [47]. 

Chen and Weil (2011) [9] stated that SOC changes were 

responsive to labile organic C fractions, with sensitivities 

decreasing in the order of POMC > DOC > MBC. The DOC 

is a large soil C pool and affects many chemical and 

biological processes (Chantigny, 2003) [10] and can imply 

short-term responses to crop management practises. Due to 

the preservation of soil surfaces, it usually decreases with 

depth (Qualls and Haines, 1992) [50]. The contribution to the 

DOC pool of crop residues and root exudates, however, is not 

fully known. By generating residues of variable quantity and 

consistency, cropping systems have varying effects on DOC 

pools (Lorenz and Lal, 2005) [38]. Chantigny (2003) [10] stated 

that under CT regimes, burial of crop residues increased soil 

C and DOC levels as residues experienced physical 

breakdown, resulting in higher levels of decomposition and 

DOC. Guo et al. (2015) [23] reported that ZT treatments 

increased the concentration of dissolved organic carbon 

(DOC) by 29.5% and 14.1% in the > 0.25 mm aggregate and 

< 0.25 mm aggregate in the 0-5 cm soil layer, relative to CT 

treatments, respectively. Larney et al. (1997) [35] recorded that 

no tillage significantly increased SOC by 8 percent and 
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increased organic carbon light fraction (LFOC) by 15 percent 

after 16 years of spring wheat-fallow rotation relative to 

traditional tillage, but the increase in LFOC under ZT was not 

statistically significant, suggesting a higher variability of 

LFOC. The interaction between clays and slower 

decomposing carbon inputs to form soil aggregates can be 

facilitated by the lower disturbance in ZT systems. However, 

under ZT, faunal populations and microbial biomass (in 

particular fungal biomass) are also higher and these species 

play an important role in soil aggregation (Rillig and 

Mummey, 2006) [51]. In addition, in ZT systems, the root 

system has been considered an important agent for stabilising 

macroaggregates, while new C inputs from surface residues 

do not seem to contribute as much to C pools associated with 

macroaggregates (Gale et al., 2000) [20]. 

 

Conclusion 

Due to the unparalleled increase in the world population and 

rapid economic growth, the number of food-insecure 

individuals may increase. In addition, due to growth in 

popularity, soil depletion, urbanisation, and other competing 

uses, the per capita cropland region is also declining. The 

stratagem is therefore to balance food production demand 

with the need for soil regeneration and reduction of the 

environmental footprint of agroecosystems. By following 

sustainable practises such as zero tillage, this can be done. 

The goal is to generate more from less soil, less water usage, 

less fertiliser and pesticide production, and less energy 

consumption. In order to transform scientific information into 

effect, the much needed paradigm change will also entail 

defining and enforcing effective policies. Zero tillage, 

properly applied, is one of the best solutions with the ability 

to enhance all physical properties of the land, preserve soil 

and water, and retain productivity. By designing site-specific 

packages and informing the agricultural community and the 

general public about the merits of zero tillage and stewardship 

of soil resources, its implementation can be strengthened. 

Finally, we concluded in a nut shell that long-term zero tillage 

practises could boost the organic carbon stocks of the soil and 

conserve soil resources for sustainable agriculture. Compared 

to traditional tillage in soils, the sum of macroaggregates and 

the mean residence time of total soil carbon upgrades at zero 

tillage. 
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