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Abstract 

The prediction of evapotranspiration is necessary for a reliable management of irrigation systems. This 

paper is based on models used for the prediction of potential evapotranspiration in the area of Raichur 

District, Karnataka, India. The potential evapotranspiration time series was estimated based upon 

Thornthwaite model and possible Seasonal ARIMA models were developed and best fit model were 

selected based on Least AIC and BIC values and forecasting was done for 1-6 months lead time. The 

obtained results show that the ARIMA model is a very effective and reliable prediction model for short 

term forecasts. 
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Introduction 

Evapotranspiration (ET) is usually the largest component of the hydrologic cycle, given that 

most precipitation that falls on land is returned to the atmosphere. Globally, about 60% of the 

annual precipitation falling over the land surface is consumed by ET. Quantification of ET is 

used for many purposes, including crop production, water resources management, and 

environmental assessment (Aruna et al., 2017) [2]. It is important component for field water 

balance and needs to be accurately quantified. The amount of water supplied to meet the 

evapotranspiration requirements of agricultural crops dictates the quality and quantity of 

production in an area. The ET data for agricultural crops has become increasingly important in 

irrigation as well as in water resources management. The ET process is controlled by factors 

such as temperature, solar radiation, and humidity, which vary temporally and spatially 

(Mohan and Arumugam, 1995) [8]. 

The stochastic models are based on the time dependent variation and consider random effects 

involved in the ET process. Stochastic linear models are fitted to hydrological data or time 

series such as evapotranspiration series for two main reasons: it enables the integration of an 

on-farm system with the main system and it facilitates the real-time operation of an irrigation 

system. The synthetic and forecast data are of considerable importance to the design and 

operation of water resource systems. The most popular time series model is the autoregressive 

integrated moving average (ARIMA) model. In this model the forecast of a variable is defined 

as a linear combination of the previous state of variable and previous forecast error. The 

ARIMA process is a powerful time series modeling and forecasting technique which possesses 

flexibility for the inclusion of many time series characteristic. In past ARIMA models have 

been used successfully to hydrological time series model (Popale and Gorantiwar, 2014) [10]. 

Mohan and Arumugam (1995) [8] studied on seasonal ARIMA modelling of weekly data of 

evapotranspiration of annamlainagar meteorological station, India. Popale and Gorantiwar 

(2014) [10] used ARIMA model for forecasting rainfall of rahuri region, India. Gorantiwar and 

Patil (2009) [5] did analysis of ETo of Rahuri region, India. Hamdi et al. (2008) [7] developed 

seasonal ARIMA model for the Jordan valley. Asadi et al. (2014) forecasts evapotranspiration 

for humid and semi-humid region. salas et al. (1980) [11] discussed in detail about time series 

modelling. The objective of this study is to establish a time series model to analyse and 

forecast reference crop evapotranspiration for the Raichur district. 

 

Materials and Methodology 

Raichur is an administrative district in the Indian state of karnataka. It is located in the 

northeastern part of the state and is bounded by Yadgir district in the north in the north, Bijou 

and Bagalkot district in the northwest, Koppel district in the west, Bellary district in the south,
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Mahabubnagar district of Telangana and Kurnool district of 

Andhra Pradesh in the east. The district is bounded by 

the Krishna River on the north and the Tungabhadra River on 

the south. The wedge of land between the rivers is known as 

the Raichur Doab, after the city of Richer. Bijou and Yadira 

districts lie to the north across the Krishna River. Bagalkot 

and Koppel districts lie to the west. Across the Tungabhadra 

lies Bellary District of Karnataka to the southwest and 

Mahabubnagar of Telangana to the southeast. Kurnool 

District of Andhra Pradesh state lies to the east, and includes 

the lower portion of the Raichur Doab. 

 

Thornth waite method (Potential evapotranspiration) 

The potential evapotranspiration is calculated by: 

 

 
 

Where 

T is monthly mean temperature (°C); I is heat index 

calculated as the sum of 12 month index values; m is the 

coefficient dependent on I. 

 

m=6.75 × 10−7·I3 – 7.71 × 10−7·I2 + 1.79 × 10 −2·I + 0.492 

 

K is a correction coefficient computed as a function of the 

latitude and month. 

 

Description of the stochastic models   
The stochastic models, which are often known as time series 

models have been used in scientific, economic and 

engineering applications for the analysis of time series. Time 

series modeling techniques have been shown to provide a 

systematic empirical method for simulating and forecasting 

the behavior of uncertain hydrologic systems and for 

quantifying the expected accuracy of the forecasts (Mishra 

and Desai, 2005) [9]. 

 

ARIMA models  

Autoregressive (AR) models can be effectively coupled with 

moving average (MA) models to produce a general and useful 

class of time series models named autoregressive moving 

average (ARMA) models. In an ARMA model the current 

value of the time series is expressed as a linear aggregate of p 

previous values and a weighted sum of q previous deviations 

(original value minus fitted value of previous data) plus a 

random parameter. 

However, an ARIMA model can be used when the data are 

stationary. This class of models can be extended to non-

stationary series by allowing differencing of data series. 

These models are called autoregressive integrated moving 

average (ARIMA) models. Box and Jenkins (1976) [3] 

provides a new generation of forecasting tools, known as the 

ARIMA methodology, which emphasizes on analyzing the 

stochastic properties of time series on their own rather than 

constructing single or simultaneous equation models. ARIMA 

models allow each variable to be stated by its own lagged 

values and stochastic error terms. The general non-seasonal 

ARIMA model is AR to order p and MA to order q and 

operates on dth difference of the time series zt; thus a model of 

the ARIMA family is classified by three parameters (p, d, q) 

that can have zero or positive integral values (Mishra and 

Desai, 2005) [9] 

 

The general non-seasonal ARIMA model may be written as  

∅(𝐵)∇𝑍𝑡
𝑑 =  𝜃(𝐵)𝑎𝑡 

Where 

θ (B) are polynomials of order p and q, respectively. Non-

seasonal AR operator of order p is written as 

 

∅(𝐵) = (1 − ∅1𝐵 − ∅2𝐵2 − ⋯ ∅𝑝𝐵𝑝) and non-seasonal MA 

operator of order q is written as  

 

 𝜃(𝐵) = (1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ 𝜃𝑞𝐵𝑞)  

 

Seasonal ARIMA models  
Many time series contain cyclic features. Very often in 

hydrologic time series these features are of an annual cycle 

primarily due to the earth’s rotation about the sun. Such series 

are cyclically non-stationary. Once the deterministic cyclic 

effects have been removed from a series, the ARIMA 

approach can be applied to obtain a linear model for the 

stochastic part of the series. Box et al. (1994) [4] have 

generalized the ARIMA model to deal with seasonality, and 

define a general multiplicative seasonal ARIMA model, 

which are commonly known as SARIMA models. An 

inherent advantage of the SARIMA family of models is that 

few model parameters are required for describing time series, 

which exhibit non-stationary both within and across the 

seasons. In short notation the SARIMA model described as 

ARIMA (p, d, q) (P, D, Q)s, where (p, d, q) is the non-

seasonal part of the model and (P, D, Q)s is the seasonal part 

of the model, which is mentioned below 

 

∅𝑝(𝐵)Φ𝑝(𝐵𝑠)∇𝑑∇𝑠
𝐷𝑍𝑡 =  𝜃𝑝(𝐵)𝜑𝑄(𝐵𝑠)𝑎𝑡 

 

Where 

p is the order of non-seasonal auto regression, d the number of 

regular differencing, q the order of no seasonal MA, P the 

order of seasonal auto regression, D the number of seasonal 

differencing, Q the order of seasonal MA, s is the length of 

season, seasonal AR parameter of order P, seasonal MA 

parameter of order Q.  

  

Model identification  

This step consists of identifying the possible ARIMA model 

that represents the behavior of the time series. The series 

behavior was investigated by the autocorrelation function 

(ACF) and partial autocorrelation function (PACF). The ACF 

and PACF were used to assist in determining the order of the 

model. The information provided by ACF and PACF is useful 

to suggest the type of models that can be built. The final 

model was then selected using the Akaike information 

criterion (AIC) and Schwarz-Bayesian criterion (SBC). These 

criteria help to rank models (models having the lowest value 

of criterion being the best). The AIC and SBC take the 

mathematical form as shown below. 

 

 AIC= -2 log (L) + 2k   

 SBC= -2 log (L) + k ln (n)   

 

Where 

k is number of parameters in the model, L is the likelihood 

function of the ARIMA model; and n is the number of 

observations. 

 

Parameter estimation 

After identifying the appropriate model as an essential step, 

the estimation of model parameters was achieved. The model 
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estimate values for the AR and MA parts were calculated 

using Maximum likelihood. The AR and MA parameters were 

tested to make sure that they are statistically significant or 

not. The associated parameters, such as standard error of 

estimates and their related t-values, are also calculated 

 

Diagnostic checking 

Diagnosing the ARIMA model is a crucial part and the last 

step of the model development. It involves in checking the 

adequacy of selected model. Several diagnostic statistics and 

plots of residuals are investigated to see if the residuals are 

correlated white noise or not. In this study the residual ACF 

function (RACF) was obtained to determine whether residuals 

are white noise.  

 

Drought forecasting 

The prediction of Potential evapotranspiration was done for 1-

6 month lead time using the best fit models from historical 

data. Basic statistical properties of the observed and predicted 

data for 1-6 month lead time was computed and tested 

whether the predicted data preserve the basic statistical 

properties of the observed PET series. The predictions are 

calculated for different lead time. For instance, a 1-month 

lead time prediction means that during January 2017, the 

prediction for February 2017 is computed. The correlation 

coefficients (R), RMSE and MAE were observed between the 

observed and predicted data for 1 to 6 month lead times. 

 

Results and Discussion 

Development of model was done with certain prerequisite 

tests namely Stationarity and autocorrelation test. The 

autocorrelation test was carried out using box. Test and 

corresponding probability levels are presented in Table 1. The 

results reveals that the test statistic for box. Test with a Chi 

square and P values were 233.73 (0.01), 261.11 (0.01), 237.33 

(0.01), 235.86 (0.01) and 235.86 (0.01) for Raichur, Manvi, 

Sindhanuru and Lingasugur respectively, were observed to be 

significant at 5 % level of significance, hence it can be 

understood that autocorrelation exists in data. On the other 

hand adf.test was carried out to check whether the data is 

stationary or not. The results reveal that data is observed to 

have a seasonality so seasonal differencing was done to the 

data sets Table 2. 

The principal step in Box-Jenkins ARIMA model building is 

identification of the model. Different orders of Autoregressive 

(AR) and Moving Average (MA) parameters p and q are 

considered and combination of the order which yields 

maximum log-likelihood and lowest values of Akaike 

Information Criteria (AIC) and Bayesian Information Criteria 

(BIC) are considered as best model. The results pertaining to 

Raichur, Manvi, Sindhanuru and Lingasuguru stations 

regarding model development are presented in Table 3 & 4. 

The ACF and PACF were plotted (Fig. 1 and 2) to determine 

the model, the data were observed have a seasonality in the 

data so seasonal ARIMA models were selected with a 

seasonal differencing as shown in Table 4. The best selected 

models for different stations were ARIMA (2,0,2)(1,1,2)12, 

ARIMA (1,0,1)(2,1,0)12, ARIMA (1,0,1)(1,1,2)12 and ARIMA 

(1,0,1)(2,1,0)12 with an maximum likelihood values of -

1380.54, -1205.10, -1338.08 and -1356.04 respectively for 

Raichur, Manvi, Sindhanuru and Lingasuguru. The 

parameters estimated for different stations are presented in 

Table 4. In addition, the residuals were obtained by 

differencing original series with the fitted series and residuals 

were found to be white noise as presented in Table 5. 

Soon After the development of models for 4 taluks the 

forecasting part was carried out at different lead time (1-6 

months) and the results Table 6 reveal that initially for all 

stations the forecast was observed to be good at 1 lead time 

with a correlation coefficient of 0.90, 0.93, 0.87 and 0.90 for 

Raichur, Manvi, Sindhanur and Lingasugur respectively. The 

RMSE and MAE were observed to be least at 1 leads and 

increases as the lead time increase, these stochastic models 

were found to suitable to forecast up to 1 lead time. A view at 

the Table 6 can be easily noticed that as the lead time 

increases the error rate has been increase tremendously. It can 

be easily concluded that Seasonal ARIMA models suits well 

for forecasting at 1 month lead time for Potential 

evapotranspiration forecasting under Raichur Region. Basic 

statistical properties are compared between observed and 

forecasted data for one month lead time, using t-test for the 

means and F-test for standard deviation (Haan 1977) [6], 

shown in Table 7. Since tcal values related to means were 

between t-critical table values (±1.71 for two tailed at a 5% 

significance level), the data shows that there is no significant 

difference between the mean values of observed and predicted 

data. Similarly, the Fcal values of standard deviation were 

smaller than the F-critical values at a 5% significance level. 

Thus, the results show that predicted data preserves the basic 

statistical properties of the observed series. 
 

Table 1: Auto correlation test for different station 
 

Station Chi-Square Lag order P-value 

Raichur 233.73 1 <0.001 

Manvi 261.11 1 <0.001 

Sindanuru 237.33 1 <0.001 

Lingasuguru 235.86 1 <0.001 
 

Table 2: Stationarity test for different station 
 

Station Dickey fuller Lag order P-value 

Raichur -19.691 7 0.01 

Manvi -18.671 7 0.01 

Sindanuru -19.649 7 0.01 

Lingasuguru -19.841 7 0.01 
 

Table 3: Log likelihood AIC and BIC values of ARIMA model for different station 
 

Stations Model Log-Likelihood AIC BIC 

Raichur ARIMA (2,0,2)(1,1,2)12 -1380.54 2777.07 2808.93 

Manvi ARIMA (1,0,1)(2,1,0)12 -1205.10 2422.01 2445.9 

Sindhanuru ARIMA (1,0,1)(1,1,2)12 -1338.08 2688.16 2712.05 

Lingasuguru ARIMA (1,0,1)(2,1,0)12 -1356.04 2724.08 2747.97 
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Table 4: Parameter estimation of ARIMA by maximum likelihood method for different station 
 

Station Model Parameters Estimate S.E. Z value P-value 

Raichur ARIMA (2,0,2)(1,1,2)12 

AR1 -0.262 0.144 -1.811 0.069 

AR2 0.605 0.117 5.165 < 0.001 

MA1 0.560 0.169 3.324 < 0.001 

MA2 -0.389 0.157 -2.477 0.013 

SAR1 0.256 0.323 0.791 0.429 

SMA1 -1.268 0.310 -4.096 < 0.001 

SMA2 0.360 0.285 1.264 0.206 

Manvi ARIMA (1,0,1)(2,1,0)12 

AR1 0.636 0.111 5.736 < 0.001 

MA1 -0.279 0.143 -1.949 0.05 

SAR1 -0.747 0.047 -15.787 < 0.001 

SAR2 -0.373 0.048 -7.793 < 0.001 

Sindhanuru ARIMA (1,0,1)(1,1,2)12 

AR1 0.669 0.114 5.858 < 0.001 

MA1 -0.370 0.146 -2.533 0.01 

SAR1 0.101 0.308 0.327 0.74 

SMA1 -1.165 0.300 -3.887 < 0.001 

SMA2 0.264 0.285 0.863 0.38 

Lingasuguru ARIMA (1,0,1)(2,1,0)12 

AR1 0.624 0.122 5.109 < 0.001 

MA1 -0.316 0.152 -2.083 0.03 

SAR1 0.122 0.309 0.396 0.69 

SMA1 -1.177 0.299 -3.935 < 0.001 

SMA2 0.257 0.285 0.903 0.36 

 
Table 5: Auto correlation check for residuals of ARIMA model at different station 

 

Station Chi-Square Lag order P-value 

Raichur 2.10 1 0.14 

Manvi 0.04 1 0.82 

Sindhanuru 0.01 1 0.91 

Lingasugur 2.27 1 0.13 

 
Table 6: Performance measure of Seasonal ARIMA models at different stations 

 

Station Model Performance measures Lead time 

Raichur ARIMA (2,0,2)(1,1,2)12 

 
1 2 3 4 5 6 

RMSE 17.43 24.80 25.29 24.84 23.14 22.15 

MAPE 23.31 14.56 14.25 13.75 15.14 13.93 

MAE 13.64 21.10 20.55 19.81 20.10 17.35 

R 0.90 0.83 0.85 0.83 0.80 0.80 

Manvi ARIMA (1,0,1)(2,1,0)12 

RMSE 10.71 17.99 19.62 18.49 17.53 17.40 

MAPE 9.27 16.56 18.10 17.66 17.31 16.86 

MAE 8.99 15.92 16.68 15.95 15.13 13.86 

R 0.93 0.83 0.84 0.84 0.81 0.80 

Sindhanuru ARIMA (1,0,1)(1,1,2)12 

RMSE 10.52 20.22 39.54 52.15 59.60 61.46 

MAPE 5.28 10.55 22.50 29.21 33.49 37.85 

MAE 7.70 15.77 32.81 43.15 48.93 51.73 

R 0.87 0.77 0.70 0.71 0.65 0.54 

Lingasuguru ARIMA (1,0,1)(2,1,0)12 

RMSE 20.83 23.05 53.72 61.98 64.58 66.71 

MAPE 10.51 40.34 30.67 35.9 41.02 45.01 

MAE 15.59 33.54 44.59 51.29 54.88 56.32 

R 0.90 0.81 0.82 0.81 0.79 0.77 

 
Table 7: Comparison of statistic properties of the observed and predicted data 

 

Stations Mean observed Mean forecasted Decision (t<1.71) 
Observed 

variance 

Forecast 

variance 
Decision (f < 4.05) 

Raichur 137.86 134.19 1.03 1392.85 994.21 0.14 

Manvi 97.75 97.33 0.18 640.59 547.634 0.0008 

Sindhanuru 136.74 136.54 0.009 1088.28 1397.82 0.0003 

Lingasuguru 136.64 136.96 -0.072 1257.64 1546.41 0.0008 
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Fig 1: Autocorrelation function plot for Raichur Station 
 

 
 

Fig 2: Partial autocorrelation function plot for Raichur Station 

 

Conclusion 

A view over the results predicted by the Seasonal ARIMA 

models reveals that the models have an ability to forecast up 

to 1 one month lead month with a higher accuracy over all the 

stations. Of the all stations, Seasonal ARIMA model provided 

excellent results at Sindhanuru station with an MAE, RMSE 

and MAPE values of 7.70, 10.52 and 5.28 respectively. 

Similarly for the basic statistical analysis the difference 

between the observed and forecasted mean were found to be 

no significant. The prediction of evapotranspiration 

guarantees reliable project planning, design and operating of 

irrigation systems. 
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