

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2020; 9(1): 1481-1483 Received: 16-11-2019 Accepted: 18-12-2019

Sanjoy Roy

Department of Seed Science and Technology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India

Suryakant Hembram

Department of Plant Physiology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India

Trisha Sinha

Department of Plant Physiology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India

Satya Narayan Prasad

Department of Botany, Plant Physiology and Biochemistry, Dr. Rajendra Prasad Central Agriculture University, Pusa, Samastipur, Bihar, India

Corresponding Author: Trisha Sinha Department of Plant Physiology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, India

Role of phytohormones on seedling growth characteristics of different varieties of oil seeds and pulses

Sanjoy Roy, Suryakant Hembram, Trisha Sinha and Satya Narayan Prasad

Abstract

Present investigation was undertaken to see the effect of different plant hormones like GA₃ and ABA on germination and other seedling characters of cultivars of oil seed and pulses. Seed treatment with GA3 and ABA at the concentration 10^{-3} M was provided for 2 hours. After that treated and control seeds were placed in square glass plate with three replications and placed inside germinator. After germination in case of oil seed, Jhumka (V₁) recorded the highest germination percentage (94.11%) for T_1 followed by T_2 and lowest germination percentage (91.87%) was recorded for control. For the variety Bhagirathi (V_2) a slight decrease in germination was recorded in case of T₂ than control, whereas, T₁ recorded the highest of it (97.26%). For pulses, Goutom (V_3) recorded highest value of germination percentage for T_1 and lowest value for the T₂. For V₄, T₀ was found with highest germination percentage followed by T₂ and T₁. Seedling shoot length (cm) of V_1 was the highest in case of T_1 followed by T_0 and slight decrease was noticed for T_2 where the value was 8.95 cm. In case of V_2 , highest seedling shoot length was noticed for T_1 and lowest (7.91 cm) for T_0 . For V_3 , T_1 was observed with highest value followed by T_0 whereas T_2 recoded lowest value. In case of V_4 , it obtained the highest seedling shoot length (12.74 cm) for T_1 and the lowest (9.10 cm) for T₀. Seed treatment with ABA though recorded small increase in some of the seed and seedling parameters but it cannot be recommended for seed treatment of different cultivars or varieties of oil seed and pulses. Seed treatment with GA3 in most of the cases both for oil seed and pulses enhanced characters like germination percentage, seedling length, vigour index etc. than control, indicating use of GA₃ for better performance of oil seed and pulses. So, seed treatment with GA₃ at the concentration of 10⁻³ M can be recommended to farmers for better seedling growth in case of pulses and oil seeds.

Keywords: GA₃, ABA, germination percentage, vigour

Introduction

Rapid deterioration of stored seed is a serious problem in India where the high temperature and high relative humidity greatly accelerate the process of ageing. The control of temperature and humidity during storage has a profound influence on vigour and viability of seeds but such facilities are presently not available to all seed producers and small cultivators. Chemicals like p-amino benzoic acid are known as free radical quenching agents. These chemicals have the capacity to slow down loss of viability (Basu, 1976)^[2]. Seeds of rabi crops, like wheat etc., pass through the hot and humid monsoon season in Eastern India, resulting in a significant loss of viability. The beneficial effects of water soaking and seed chemical treatments on maintaining viability are yet to be clarified. Seed invigoration for imparting resistant to stress conditions has been strongly advocated by Henckel (1961)^[3]. Salim and Todd (1968)^[8] pointed out that there could be no generalization and the concentration of chemicals had to be decided crop wise. Heydecker (1972)^[5] believed that seed could be invigorated with hormonal treatments. The complex growth and development of a plant depends on plant growth hormones. Synthetic growth regulating hormones are also important in regulating the growth and development of agricultural, horticultural and silvicultural crops. These Exogenous hormones change the endogenous levels of the naturally occurring hormones and allow for desired modifications. Growth hormones include auxins, gibberellins, cytokinins, abscisic acid, ethylene, jasmonic acid, salicylic acid, brassinosteriods. These hormones play a major role in controlling the ontogenesis of plant growth such as shoot, root and differentiation of plant parts, initiation of cambial activity, xylem differentiation, annual ring formation, in junction of flowering, fruit set, altering flowering by morphological modification, seed development, seed yield and quality. Present investigation was undertaken to see the effect of different plant hormones like GA₃ and ABA on germination and other seedling characters of cultivars of oil seed and pulses.

Materials and Methods

Various seed quality parameters of two oil seed varieties i.e. NC-1 (Jhumka) as V_1 and Bhagirathi as V_2 along two varieties of pulses i.e. Goutom as V_3 and Sarada as V_4 with treated with three treatments i.e. GA_3 (10^{-3} M) as T_1 , ABA (10^{-3} M) as T_2 and control as T_0 were taken as follows-

Germination percentage: Petridish method was followed to evaluate the germination percentage of four varieties treated with three treatments as discussed earlier. Germination percentage was calculated by following formula-

Germination percentage = (Number of seeds germinated/Total number of seeds sown)*100

Seedling length (square glass plate method): To avoid any obstruction, overcrowding or intermingling of seedlings, glass plates are used, where 10 seeds with equal spacing were kept. At first the glass plates were wrapped with blotting paper and the seeds are placed on that. Then the wrapped glass plates were covered by plastic bags with adequate moisture and placed in glass plate slanted plastic stand. Then the trays were placed in germinator with temperature (26 ± 1) °C for 10 days. After 10 days, they were taken out and the individual seedling was plucked out from the blotting paper and the seedling length was measured with a cm scale and accordingly the average length of root and shoot per replication was noted down. Here, root length and shoot length were taken into account separately for better information.

Seedling fresh weight: After measuring the length of 10-day old seedling i.e. lengths of shoot and root, seedlings were surface dried with the help of blotting paper. The fresh weight (g) was noted in a weight balance with so care that minimum water should not be adhered to the seedlings.

Seedling dry weight: After measuring the seedling length (cm) and fresh weight (g), the seedlings were cut and dried at (65-70)°C for 2 days and then dry weight (g) of seedlings was taken. Seedlings having higher dry weight were considered to have higher vigour. Higher dry weight means high dry matter accumulation in seedling which is highly desirable in seedling because it is a very important fraction of vigour.

Vigour index: Seed vigour means the strength of the seeds to cope up with the adverse situations of its surroundings and ultimately gives effective plant stand in field. Seed vigour determines the activity and performance of seed lots. For judging this seed vigour, rate and uniformity of seed germination and seedling growth, emergence ability of seeds under favourable environmental condition and performance after storage were considered.

Statistical analysis: The experimental data were subjected to Analysis of Variance as per design i.e., CRD (Completely Randomized Design). The Critical Differences (C.D.) at 5% Level of Significance was worked out for comparing various treatment means, whenever the F value in ANOVA was found to be significant. The Standard Error of Means (SEm) was also calculated.

Results and Discussions

Seed treatment with GA_3 and ABA at the concentration 10^{-3} M was provided for 2 hours. After that treated and control seeds were placed in square glass plate with three replications and placed inside germinator. After germination in case of oil

seed, Jhumka (V₁) recorded highest (94.11%) germination percentage for T₁ (GA₃) followed by T₂ (ABA) and lowest germination percentage (91.87%) for the same was recorded for control (Table-1). For the variety Bhagirathi (V₂), a slight decrease in germination was recorded in case of T₂ than control whereas, T₁ recorded the highest (97.26%). For pulses, Goutom (V₃) recorded highest value of germination percentage for T₁ that is 96.06% and lowest value for the T₂ which is 93.29%. For V₄ (Sarada), the highest germination percentage was obtained at T₀ (96.32%) followed by T₂ (96.20%) and T₁ (96.02%).

After 10 days of growth inside germinator, seedling root length of control and treated seeds were measured. V₁ recorded highest root length at T₁ which is 12.26 cm and lowest of it (9.16 cm) was recorded for control that is T₀. Root length of 8.14 cm, 7.57 cm and 7.94 cm was obtained by V₂ at T₁, T₂ and T₀, respectively (Table-2). Similar results were reported by Basra *et al.* (2005) ^[1] in wheat. The V₃ variety recorded the lowest seedling root length of 10.78 cm and highest seedling root length of 12.47 cm, observed at control and T₂, respectively. The V₄ obtained highest root length in case of T₁ (9.17 cm) followed by T₀ (9.12 cm) and slight decrease in seedling root length for the same was noticed for T₂ (8.28 cm). The reason behind this may be due to ABA which is a growth retardant.

Seedling shoot length of control and treated seeds recorded for the four mentioned varieties is represented in Table-3. Both V₁ and V₂ obtained the highest seedling shoot length of 12.26 cm and 11.87 cm, respectively in case of T₁. However, V₁ recorded lowest seedling shoot length at T₂ which is 8.95 cm and V₂ at T₀ which is 7.91 cm. The V₃ variety recorded the highest value of it (11.86 cm) at T₁ followed by T₀ (9.09 cm) whereas T₂ recorded lowest value (8.14 cm). In case of V₄, highest seedling length (12.74 cm) and lowest seedling length (9.10 cm) was obtained at T₁ and T₀, respectively.

Vigour index for all the four varieties at control and treatments is shown in Table-4. Vigour index for V₁ was recorded highest (2016.30) at T₁ and lowest (1844.90) at T₂. In case of V₂ also, highest and lowest vigour index was recorded for T₁ (1925.73) and T₂ (1398.02), respectively. Highest vigour index in V₃ was recorded for T₁ and lowest for T₀. For V₄, T₁ recorded highest value and lowest value for T₂. Farooq *et al.* (2011)^[7] reported similar results in wheat.

While considering seedling fresh weight, V_1 when treated with GA₃ that is T₁ recorded maximum value (0.26 g) followed by T₀ (0.24 g) and minimum value was found for T₂ (0.18 g). In case of V₂ maximum and minimum seedling fresh weight was obtained in T₀ (0.26 g) and T₂ (0.21 g), respectively. V₃ obtained highest seedling fresh weight at T₁ (0.27 g) followed by T₀ (0.25 g) and T₂ (0.24 g). The variety V₄ recorded same seedling fresh weight of 0.25 g at T₂ and T₀, with the highest of it at T₁ which is 0.28 g (Table-5). Increase of root and shoot length by application of IBA and GA₃ along with salicylic acid was reported by Ghodrat *et al.* (2013) in rice.

Seedling dry weight recorded by V₁ was 0.05 g, 0.05 g and 0.04 g for T₁, T₂ and T₀, respectively (Table-6). Similar higher values of seedling dry weight were obtained by V₂, in case of both T₁ and T₂ which is 0.04 g, whereas lower value of it at T₀ (0.03 g). In case of V₃ similar dry weight of 0.05 g was recorded for all the treatments and in case of V₄, T₁ and T₂ both helped to attain higher dry weight of 0.05 g, whereas least value was found for T₀ (0.04 g). Similarly in case of wheat seeds when treated with Kinetin and GA₃ there was

Journal of Pharmacognosy and Phytochemistry

increase in germination, radicle and plumule length and seedling dry weight (Khan *et al.*, 2011)^[6].

Table 1: Germination percentage of seeds at control and treatments

Treatment	V ₁	V_2	V_3	V_4
T1	94.11	97.26	96.06	96.02
T ₂	93.16	86.83	93.29	96.20
T ₀	91.87	92.82	93.98	96.32
SEm	0.779	0.864	1.271	0.688
CD at 5%	2.696	2.992	4.399	2.380

Table 2: Seedling root length (cm) of seeds at control and treatments

Treatment	V1	V_2	V 3	V_4
T_1	11.09	8.14	11.70	9.17
T ₂	10.85	7.57	12.47	8.28
T ₀	9.16	7.94	10.78	9.12
SEm	0.584	0.539	0.656	1.090
CD at 5%	2.020	1.865	2.270	3.771

 Table 3: Seedling shoot length (cm) of seeds at control and treatments

Treatment	V ₁	V_2	V_3	V_4
T_1	12.26	11.87	11.86	12.74
T2	8.95	8.52	8.14	9.36
T ₀	9.02	7.91	9.09	9.10
SEm	0.279	0.315	0.227	0.694
CD at 5%	0.965	1.090	0.785	2.401

Table 4: Vigour index of seeds at control and treatments

Treatment	V1	V_2	V 3	V 4
T ₁	2016.30	1925.73	2261.98	2103.75
T2	1844.90	1398.02	1932.78	1699.93
T ₀	1846.76	1492.59	1926.99	1754.73
SEm	3.861	5.424	4.698	5.111
CD at 5%	13.360	18.755	16.257	17.686

 \overline{V}_3 V₁ V_2 V_4 Treatment 0.26 0.24 0.27 0.28 T_1 0.21 0.25 T_2 0.18 0.24 0.24 0.26 0.25 0.25 T_0 0.018 0.025 0.018 0.044 SEm CD at 5% 0.062 0.086 0.062 0.152

Table 5: Seedling fresh weight (g) of seeds at control and treatments

Table 6: Seedling dry weight (g) of seeds at control and treatments

Treatment	V1	V_2	V 3	V_4
T1	0.05	0.04	0.05	0.05
T2	0.05	0.04	0.05	0.05
T ₀	0.04	0.03	0.05	0.04
SEm	0.018	0.025	0.018	0.018
CD at 5%	0.062	0.086	0.062	0.062

Conclusion

Rapid seed deterioration is a serious problem in India. In this present study, seed treatment with ABA though recorded small increase in some of the seed and seedling parameters but it cannot be recommended for seed treatment of different cultivars or varieties of oil seed and pulses. Seed treatment with GA₃ in most of the cases both for oil seed and pulses enhanced characters like germination percentage, seedling length, vigour index etc. than control indicating use of GA₃ for better performance of different varieties of oil seed like Jhumka, Bhagirathi and pulses like Goutom and Sarada. So, seed treatment with GA₃ at concentration 10^{-3} M can be

recommended for farmers for better seedling growth in case of oil seed and pulses.

Reference

- 1. Basra SMA, Afzal I, Rashid RA, Farooq M. Pre-sowing seed treatments to improve germination and seedling growth in wheat (*Triticum aestivum* L.). Caderno de Pesquisa serie Biologia 2005; 17(1): 155-164.
- 2. Basu RN. Physico-chemical control of seed deterioration. Seed Research 1976; 4(1): 15-23.
- Henckel PA. Drought resistance of plants, methods of recognition and of intensification. Madrid Symposium. Plant Water Relations in Arid and Semiarid Conditions. UNESCO, Paris 1961, 167-174.
- 4. Ghodrat V, Moradshahi A, Rousta MJ, Karampour A. Improving yield and yield components of rice (*Oryza sativa* L.) by indolebutyric acid (IBA), gibberellic acid (GA₃) and salicylic acid (SA) pre-sowing seed treatments. American-Eurasian Journal of Agricultural and Environmental Sciences 2013; 13:872-876.
- 5. Heydecker W. Vigour. In. Viability of seeds (ed. E. H. Roberts), Chapman-Hall, London 1972, 246.
- Khan MB, Gurchani MA, Mubshar-Hussain, Freed S, Mahmood K. Wheat seed enhancement by vitamin and hormonal priming. Pakistan Journal of Botany 2011; 43(3):1495-1499.
- 7. Farooq M, Aziz T, Rehman H, Rehman A, Cheema SA, Aziz T. Evaluating surface drying and re-drying for wheat seed priming with polyamines: effects on emergence, early seedling growth and starch metabolism. Acta Physiologiae Plantarum 2011; 33(5):1707-1713.
- 8. Salim MH, Todd GW. Seed soaking as a pre-sowing drought hardening treatment in wheat and barley seedlings. Agronomy Journal 1968; 60:179-182.