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Abstract 

Climate change and global warming consequently causes environmental stresses affecting plant growth 

and productivity worldwide. Latest estimates suggest that two thirds of the yield potential of major crops 

are lost due to unfavourable environmental factor or abiotic stressors. Food shortage will be the common 

phenomenon in near future as the world population will reach about 10 billion by 2050. Therefore in 

order to feed the burgeoning population it is an urgent need to develop crop plants with enhanced vigour 

and high tolerance to various unfavourable environmental abiotic stressors. Maintaining yield stability 

under adverse environmental conditions is a major challenge faced by the modern agriculture in which 

the polyamines play a very important role in mitigating the devastating effect of various environmental 

factors. Polyamines (PAs) (putrescine, spermidine and spermine) are group of phytohormone-like 

aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living 

organisms including plants. Among Polyamines, putrescine has more importance since it is the principal 

component and precursor for tertiary and quaternary PAs. Earlier studies proved that it is having role in 

diverse physiological processes such as flower development, embryogenesis, organogenesis, senescence, 

and fruit maturation and biotic and abiotic stress tolerance. Many studies suggested the probable 

mechanism of abiotic stress tolerance induced by putrescine which includes assisting an compatible 

solutes proline, glycine betaine and GABA in dehydration tolerance, stabilization of macromolecules and 

organellar membrane, inducing the production of antioxidant enzymes, playing as signal molecules in 

ABA regulated stress response pathway, regulators of several on channels, role in metabolic regulation of 

ammonia toxicity and nitric oxide (NO) production and regulating programmed cell death. Therefore, 

genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways 

may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also 

another option for increasing the stress tolerance potential in plants. Here, we have described the 

synthesis and role of various polyamines in abiotic stress tolerance in plants. 
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Introduction 

Climate change and global warming consequently causes environmental stresses affecting 

plant growth and productivity worldwide. Latest estimates suggest that two thirds of the yield 

potential of major crops are lost due to unfavourable environmental factor or abiotic stressors. 

Food shortage will be the common phenomenon in near future as the world population will 

reach about 10 billion by 2050. Therefore in order to feed the burgeoning population it is an 

urgent need to develop crop plants with enhanced vigour and high tolerance to various 

unfavourable environmental abiotic stressors. Maintaining yield stability under adverse 

environmental conditions is a major challenge faced by the modern agriculture in which the 

polyamines play a very important role in mitigating the devastating effect of various 

environmental factors. Polyamines (PAs) mainly putrescine (Put), spermidine (Spd) and 

spermine (Spm) are biogenic amines with aliphatic polycationic properties having roles in 

wide range of biological processes, including growth, development and apoptosis (Kaur-

Sawhney et al. 2003; Kuehn and Phillips, 2005) [30, 31]. They are widely distributed in 

eukaryotic and prokaryotic cells (Liu et al., 2017; Mustafavi et al., 2018) [34, 42]. Although PAs 

were discovered more than 300 years ago (Van leeuwen hoek 1978) [65], within the past few 

decades the significant progress has been made in understanding their role in plant growth 

and development (Bachrach 2010 ; Martin-Tanguy 2001; Nambeesan et al. 2008) [10, 38, 45]. PAs 

are essential for cell division and proliferation in all organisms and are concerned in diverse 

growth and development processes including chromatin function, structural integrity of nucleic 

acids, protein synthesis, and cellular membrane dynamics (Handa and Mattoo 2010; Kusano et 

al. 2008; Theiss et al. 2002; Thomas and Thomas 2001; Wallace 2009) [24, 32, 57, 58, 68]. In higher  
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plants, PAs are mainly present in their free form. Putrescine 

(Put), spermidine (Spd), and spermine (Spm) are the main 

PAs in plants, and they are involved in the regulation of 

diverse physiological processes (Xu et al., 2014b; Mustafavi 

et al., 2018) [72, 42], such as flower development, 

embryogenesis, organogenesis (Xu, 2015) [71], senescence, 

and fruit maturation and development. They are also involved 

in responses to biotic and abiotic stresses (Vuosku et al., 

2012; de Oliveira et al., 2016; Reis et al., 2016; Mustafavi et 

al., 2018) [67, 17, 51, 42]. 

Pharmacological evidence through exogenous application 

of PAs and recent molecular studies about endogenous PA 

levels by transgenic approach have demonstrated the 

important role of PAs in seed germination (Urano et al. 2005) 
[62], organogenesis (Tisi et al. 2011) [60], tissue lignification, 

flowering (Gomez-Jimenez et al. 2010) [22], pollination, 

embryogenesis, fruit development (Mattoo et al. 2007) [40], 

ripening (Torrigiani et al. 2008) [61], abscission, senescence, 

(Nambeesan et al. 2008) [45] and stress responses (Minocha et 

al. 2014 ; Takahashi and Kakehi 2010) [41, 55]. Environmental 

stress responses associated with PAs includes mineral nutrient 

deficiencies, heat, salinity, drought and osmotic stress, 

chilling, hypoxia and environmental pollutants (Kuehn and 

Phillips, 2005; Groppa and Benavides, 2008; Gill and Tuteja 

2010; Alcazar et al. 2010a) [31, 23, 21, 3, 6].  

Among PAs, put has more importance since it is the principal 

component and precursor for tertiary and quaternary PAs. 

Earlier studies proved that it is having role in growth, 

development and abiotic stress tolerance in plants. 

 

Biosynthesis of putrescines 

Put can be produced directly from Ornithine by the action of 

ODC, or indirectly from Arg by Arginine decarboxylase 

(ADC). In plants, the two alternative pathways appear to have 

specific roles in growth and development. ADC is the primary 

enzyme for Put synthesis in non-dividing elongating cells, 

secondary metabolic processes and in cells under various 

stresses, while ODC appears to be entailed in the regulation of 

the cell cycle inactively dividing cells and meristematic 

zones, (Kakkar and Sawhney 2002; Gerner and Meykens 

2004; Alcazar et al. 2006a) [28, 3, 6]. ADC is chloroplast 

localized enzyme but location of ODC is cytoplasm; thus the 

two biosynthetic pathways leading to Put might be physically 

separated within the plant cell.  

Put is synthesized either directly from ornithine by ornithine 

decarboxylase (ODC; EC 4.1.1.17) or indirectly from arginine 

via agmatine. The pathway is initiated by the arginine 

decarboxylase reaction (ADC; EC 4.1.1.19). Agmatine is 

consecutively converted to N-carbamoyl putrescine by 

agmatine imino hydrolase (AIH; EC3.5.3.12) and ultimately 

to Put by N-carbamoyl putrescine amidohydrolase (CPA; EC 

3.5.1.53). Spd and Spm are synthesized from Put by the shift 

of amino propyl groups from decarboxylated S-adenosyl 

methionine (SAM). These reactions are catalysed by 

Spdsynthase (SPD; EC 2.5.1.16) and Spm synthase (SPM; 

EC2.5.1.22). The decarboxylated SAM precursor is produced 

from SAM by S-adenosyl methionine decarboxylase 

(SAMDC; EC 4.1.1.50). 

 

 
 

Fig 1: The pathway of Polyamines biosynthesis in plants. The orange part is the ethylene synthesis pathway, and the green art is the polyamine 

synthesis pathway (there are three routes of putresine synthesis route 1, route 2 and route 3, and the blue part isthe corresponding enzyme 

inhibitor. Photo extracted from Chen et al. (2019) 

 

Putrescine and abiotic stress tolerance in plants 

There are many studies which concluded that overall 

polyamine metabolism enhanced in response to variety of 

abiotic stresses- chemical or physical. Minocha et al. (2014) 

[41] summarised the various roles of polyamines in tolerance 

and /or amelioration of stress in plants. These include: (i) 

assisting as compatible solutes along with Proline, glycine 

betaine and GABA; (ii) interactions with macromolecules 

alike DNA, RNA, transcriptional and translational complexes, 

and cellular and organellar membranes to stabilize them; (iii) 

http://www.phytojournal.com/
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purpose as directly scavenging oxygen and hydroxyl radicals 

and promoting the production of antioxidant enzymes and 

metabolites; (iv) playing as signal molecules in the ABA-

regulated stress response pathway and through the production 

of H2O2; (v) regulators of several ion channels; (vi) role in 

metabolic regulation of ammonia toxicity, nitric oxide (NO) 

production, and equilibrating organic N metabolism in the cell 

and, finally (vii) participation in programmed cell death.  

There are four types of studies (Minocha et al. 2014) [41] that 

make a strong case in favor of the importance of PAs in plant 

stress response These include: (i) up-regulation of 

PA biosynthesis in plants via transgene expression generally 

increases their tolerance to a variety of stresses such as 

freezing (Altabella et al. 2009) [9], drought (Alcázar et al. 

2010b) or both (Alet et al. 2011) [8] (ii) increased PA 

accumulation in plants under stress conditions is followed by 

raise in the activity of PA biosynthetic enzymes and the 

expression of their genes (iii) mutants of PA biosynthetic 

genes generally have less tolerance of abiotic stress 

(Kasinathan and Wingler 2004; Urano et al. 2004; Cuevas et 

al. 2008) [29, 64, 15] (iv) although exogenous supply of 

PAs makes the plants tolerant to stress, inhibition of their 

biosynthesis makes them more prone to stress damage. 

Put has been found to be associated with plant response to 

abiotic stress for over six decades. Richards and Coleman 

(1952) reported the elevated presence of Put in barley plants 

upon potassium starvation. This was attributed to the 

decarboxylation of Arg, thus implicating ADC. Since then, 

many reports have appeared on the association of the ADC 

pathway with abiotic stress in plants. 

The accumulation of Put during drought stress is thought to be 

primarily the result of increased ADC activity that may be 

assured by transcript levels and/or enzyme activity in 

Arabidopsis (Alca´zar et al. 2006b; Urano et al. 2003) [2, 63], 

rice (Yang et al. 2007) [73] and other species. In Arabidopsis 

ADC1 and ADC2 were predominately induced by at least 

one type of abiotic stress (salt, drought, and cold) and 

ABA treatment (Alcázar et al. 2011) [4]. In addition Poncirus 

trifoliate and Prunus persica (Peach) ADC were also induced 

by multiple abiotic stresses (Liu et al. 2009; Wang et al. 

2011a, b) [36, 69, 70]. All these data suggested a 

putative connection between Put metabolism fluxes and 

plant abiotic stress responses. 

Do et al. (2013) [18] reported that levels of Put and Spd 

decreased significantly under drought stress, while Spm piled 

up; make it the most abundant PA under drought stress in rice. 

The accumulation of PAs due to abiotic stress reported in 

other studies conducted in rice i.e., drought (Yang et al. 2007) 
[73], cold (Akiyama and Jin, 2007) [1] in wheat under osmotic 

(Liu et al. 2004) in apple callus under chilling, salt and 

dehydration (Hao et al. 2005). Put accumulates in Arabidopsis 

plants within 12 h after exposure to 4◦C, and this level is 

enhanced or sustained for at least 84 h (Cuevas et al. 2008) 
[15].  

 

Transgenic plants overexpressing ADC having abiotic 

stress tolerance 

Modification of the Put level by transgenic approach and 

study of the role of Put in response to several stresses has 

been analyzed. Manipulation of the Put level in several plants 

such as tobacco may lead to ameliorated plant tolerance 

against multiple environmental stresses. Different levels of 

mRNA accumulation of oat ADC, improved ADC activity 

and accumulation of PAs at different levels were observed in 

tobacco (Masgrau et al. 1997) [39], rice (Capell et al. 1998; 

Roy and Wu, 2001) [14, 52], eggplant (Solanum melongena) 

(Prabhavathi and Rajam, 2007) [49], and wheat (Triticum 

aestivum) (Bassie et al. 2008) [11]. Transgenic plants 

were generated by expressing the ADC gene of datura 

(Datura stramoniun) and oats under the control of different 

constitutive (maize ubiquitin 1) and inducible (ABA and 

tetracycline) promoters, transgenic plants showed tolerance to 

salt and drought with an increased accumulation of Put, Spd, 

and Spm (Roy and Wu. 2001; Capell et al. 2004; Bassie et al. 

2008) [52, 13, 11]. The accumulation of Put as well as enhanced 

tolerance to salt, dehydration, freezing stress was observed in 

transgenic A. thaliana. (Alet et al. 2011) [8]. Overexpression 

of ADC of Poncirus trifoliata (PtADC) in A. thaliana showed 

increased synthesis of Put and enhanced tolerance to high 

drought, osmotic and cold stress. (Wang et al. 2011b) [70]. 

PtADC in transgenic tobacco and tomato confers enhanced 

tolerance to dehydration and drought (Wang et al. 2011a) [69]. 

 

Conclusion 

Various abiotic stressors as a consequence of climate change 

and global warming are devastatingly affecting the plant 

productivity worldwide. On the other hand the demand for 

food is expected to increasing as a result of burgeoning 

population growth and rising incomes. Therefore, it is utmost 

need to develop stress-tolerant varieties to cope with this 

upcoming problem of climate change and food security. In 

this context PAs will lay a mighty important role as it leads to 

play a vital role in regulation of various cellular processes 

including growth, development and stress tolerance in plants 

might have general implications. However, in plants the role 

of PAs metabolism and is regulatory role in imparting abiotic 

stress tolerance is just at the initial stage and effort are still 

required to decipher in detail the molecular mechanism of 

protective role of Put in abiotic stress tolerance. It is required 

to identify the genes which are upregulated or downregulated 

by putrescine leading to stress tolerance in plants. High 

throughput analysis such as microarray, transcriptomics, 

metabolomics, reverse genetics approaches will also be 

inculcated to understand the involvement of PAs biosynthetic 

pathways in abiotic stress tolerance. Isolation and assessment 

of regulation of the enzymes of PAs biosynthetic pathways 

will also be of immense help in our better understanding of 

the mechanism of stress tolerance. Furthermore, the external 

application of PAs as can also be exploited for increasing 

tolerance to salinity, cold, drought, heavy metal, osmotic 

stress and various abiotic stressors. 
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