

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com



E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(6): 1082-1086 Received: 11-09-2019 Accepted: 15-10-2019

#### ST Pawale

Department of Agril Botany, Mahatma Phule Krishi Vidyapeeth, Rahuri, Ahmednagar, Maharashtra, India

#### **VP** Chimote

Department of Agril Botany, Mahatma Phule Krishi Vidyapeeth, Rahuri, Ahmednagar, Maharashtra, India

#### MP Deshmukh

Department of Agril Botany, Mahatma Phule Krishi Vidyapeeth, Rahuri, Ahmednagar, Maharashtra, India

Corresponding Author: ST Pawale Department of Agril Botany, Mahatma Phule Krishi Vidyapeeth, Rahuri, Dist -Ahmednagar, Maharashtra, India

# Morphological observations for various DUS characters in crosses between trypsin inhibitor free and expressing soybean [*Glycine max* (L.) merrill.] genotypes

## ST Pawale, VP Chimote and MP Deshmukh

### Abstract

Among the fifteen plants DUS characters recorded *ie* twenty six  $F_2$ , thirty four BC<sub>1</sub> $F_1$  and eleven BC<sub>1</sub> $F_2$  plants one of the promising  $F_2$  plants from Cross Phule Agrani × NRC 102 increase in 100 seed weight 14.14g over the parents 10.59g. In addition to reduced duration of flowering (42) days and maturity day (92) days (over parent Phule Agrani (54 days), (102 days), and NRC 102 days to flowering (32), days to maturity (92). BC<sub>1</sub> $F_2$  *titi* null allele exhibiting plants #5#31#38#48#29 from Phule Agrani × NRC 101 reduced flowering time (39) days to (45) days and maturity (99) days to (100) days and NRC 101 (30), (90) days. Cross Phule Agrani × NRC 102 reduced flowering time (42 to 45) days and days to maturity (98 to 99) days (#34#33#27). Cross Phule Kimya × NRC 101 (#37#58#59) reduced days to flowering (48 to 51) days and days to maturity (102 to 104) over the parents (55), (109) days and NRC (30) and (90) days with 100 seed weight (17.5g, 17g, 18g) and seed yield (19.2g, 19g. 20 g) seed yield per plant.

Keywords: Soybean, Kunitz trypsin inhibitor, null allele, DUS characters

## Introduction

Soybean [*Glycine max* (L.) Merrill] is considered as "golden bean" due to its dual qualities *viz*; high protein (40%) and oil (18 to 20%) content. Its cultivation is rapidly expanding being an important source of edible oil with industrial applications; and partly due to its high nutritional values as food for both humans and livestock. The protein and oil account for 60% of the seed with about 30% carbohydrates. In addition, 100 g soybean contains 240 mg calcium, 690 mg phosphorus, 11.5 mg iron, 432 calories, 10.5g fats and 426 mg of vitamins (A, B and D) (Nagraj, 1995)<sup>[5]</sup>. The cultivated soybean [*Glycine max* (L.) Merrill] is a member of the family Fabaceae and sub family Papilionaceae. The Genus *Glycine* consists of two subgenera, Glycine and Soja (Moench) F.J. Herm. The subgenus Soja comprises the cultivated soybean [*G. max* (L.) Merrill] and its annual wild progenitor, *G. soja* Sieb and Zucc (also known *G. ussuriensis*).

The estimates of world soybean area, production and productivity for 2017-18 are 126.64 million ha, 346.31 million tons and 2.74 t/ha, against the 2016-17 figures of 121.10 million ha, 348.85 million tons and 2.88 t/ha (Anonymous, 2017b) <sup>[3]</sup>. Total soybean production in the world is 324.2 million tons, with the world largest soybean producers being USA (31.9%), Brazil (31.8%), Argentina (17.6%) China (3.8%) and India (3.6%) (Anonymous, 2017a) <sup>[1]</sup>. In 1960's, 90% of global soybean export was destined from USA, which has gradually gone done to around 37% in recent years; with largest importers being China (44%) and European Union (22%). One of the major subjects of trade war between USA and China is the heavy duty on import of US soybean.

 Table 1: Salient features and pedigree of parental material used for the present investigation

| Genotype     | Phule Agrani<br>(KDS 344)     | Phule Sangam<br>(KDS 726)             | Phule Kimya<br>(KDS 753)      | NRC-101                        | NRC-102                        |
|--------------|-------------------------------|---------------------------------------|-------------------------------|--------------------------------|--------------------------------|
| Pedigree     | $JS-335 \times EC-$           | JS-9305 × EC-                         | JS 9305 $\times$              | Lsb-1 $\times$                 | Lsb-1 $\times$                 |
| Pedigree     | 241780                        | 241780                                | 241780                        | PI542044                       | PI542044                       |
| Developed by | ARS Kasbe<br>Digraj M.P.K.V., | ARS Kasbe Digraj,<br>M.P.K.V., Rahuri | ARS Kasbe<br>Digraj M.P.K.V., | Indian Institute<br>of Soybean | Indian Institute<br>of Soybean |
|              | Rahuri                        | WI.P.K.V., Kanuri                     | Rahuri                        | Research, Indore               | Research, Indore               |
| Release year | 2015                          | 2016                                  | 2017                          | 2014                           | 2014                           |

| Genotype          | Phule Agrani (KDS 344) | Phule Sangam (KDS 726) | Phule Kimya (KDS 753) | NRC-101     | NRC-102     |
|-------------------|------------------------|------------------------|-----------------------|-------------|-------------|
| Stem termination  | Semi Determinate       | Semi Determinate       | Semi Determinate      | Determinate | Determinate |
| Pod pubescence    | Present                | Present                | Present               | Present     | Absent      |
| Pubescence colour | Gray                   | Gray                   | Twany                 | Gray        | Gray        |
| Flower Colour     | Purple                 | Purple                 | Purple                | Purple      | Purple      |
| Days to flowering | 54                     | 60                     | 55                    | 30          | 32          |
| Days to maturity  | 102                    | 113                    | 109                   | 90          | 92          |
| Seed size         | Small                  | Bold                   | Bold                  | Bold        | Bold        |
| Germination       | Good                   | Poor                   | Good                  | Good        | Good        |
| TiTi or (titi)    | SKTI present           | SKTI present           | SKTI present          | Null allele | Null allele |

Table 1: Contd...

Soybean is predominantly self-pollinated crop in which pollination takes place before opening of flower. The healthy buds which are likely to open on next day morning were emasculation between 16.00 to 18.00 hrs and pollinated on next day morning (Carlson and Lersten, 1987)<sup>[4]</sup>. Staggered sowing at regular interval (3-6 days) was performed to insure matching of flowering time of parents used. Six crosses *viz*. Phule Agrani × NRC 101 (Cross I), Phule Agrani × NRC 102 (Cross II), Phule Sangam × NRC 101(Cross III), Phule Sangam × NRC 102 (Cross IV), Phule Kimya × NRC

101(Cross V) and Phule Kimya × NRC 102 (Cross VI) were effected in Summer 2017 and *Kharif* 2017 to produce the  $F_1$  Seeds. In early *Kharif* 2017,  $F_1$  were sown and  $F_2$  seeds were obtained.  $F_2$  seeds were sown in summer 2018. Backcrosses *i.e.* BC<sub>1</sub>F<sub>1</sub> were made in *Kharif* 2017 and selfed in summer 2018 were obtained BC<sub>1</sub>F<sub>1</sub> selfed seeds were sown in *Kharif* 2018 to get BC<sub>1</sub>F<sub>2</sub> seeds within stipulated period. Individual plants were studied for different yield associated as well as DUS parameters for soybean.

Table 2: Details of generations raised in different seasons

| Year | Place                               | Season      | Cross/self                            | Material obtained                                                          |
|------|-------------------------------------|-------------|---------------------------------------|----------------------------------------------------------------------------|
| 2017 | PGI, Botany, Research Farm, Rahuri. | Summer 2017 | $P_1 \times P_2$                      | 6F1 Obtained                                                               |
| 2017 | PGI, Botany, Research Farm, Rahuri. | Kharif 2017 | $F_1 \times P_1$ and $P_1 \times P_2$ | 6 BC <sub>1</sub> F <sub>1</sub> crossed seed + 6F <sub>1</sub> cross seed |
| 2018 | PGI, Botany, Research Farm, Rahuri. | Summer 2018 | Selfed + $BC_1F_1 \ge P_1$            | $6 F_2 + BC_1F_1$ selfed seed $BC_2F_1$ crossed seed                       |
| 2018 | PGI, Botany, Research Farm, Rahuri. | Kharif 2018 | BC1F2 Selfed BC2F1 selfed             | ,BC1F2 and BC2F1 all selfed seed (not useful du to recessive gene )        |

## **Result and Discussion**

Among the fifteen plants DUS characters recorded ie twenty six  $F_2$ , thirty four  $BC_1F_1$  and eleven  $BC_1F_2$  plants one of the promising plants from crosss Phule Agrani × NRC 102 increase in 100 seed weight (14.14) g over the parents (10.59) g. In addition to reduced duration of flowering (42) and maturity day (92) days (over parent Phule Agrani (54 days) (102 days), and NRC 101 (30), (90) and NRC 102 (32), 92). With main Kunitz trypsin inhibitor free plants validated by molecular marker.  $BC_1F_1$  cross Phule Agrani × NRC 101 (#2,#21,#11) observed determinate growth habit flower colour white as like to NRC 101 pod colour yellow days to maturity 97 days days to flowering 39 to 45 similarly (#5,) plants. BC1F2 titi null allele exhibiting plants #5#31#38#48#29 from Phule Agrani × NRC 101 reduced flowering time 39 days to 45 days and maturity 99 days to 100 days simirly observed above mentioned characters cross Phule Agrani × NRC 102 reduced flowering time (42 to 45) days and days to maturity (98 to 99) days (#34#33#27). Cross Phule Kimya × NRC 101 (#37#58#59) reduced days to flowering (48 to 51) days and days to maturity (102 to 104) over the parents (55, 109) days and NRC (30 and 90) days with 100 seed weight (17.5) g,(17) g, (18) g and seed yield (19.2) g (19) g (20) g seed yield per plant.

morphological observations where also recorded for various DUS characters total 15 as given in table (1 to 5) as specified by Ramteke *et al.* (2010) <sup>[6]</sup> in  $F_2$  and  $BC_1F_1$  generation. Similar observations were also recorded for null homozygous recessive *titi* plants of  $BC_1F_2$  populations.

## Morphological observations of F2, BC1F1 and BC1F2

Morphological observations for 15 characters were recorded for twenty six  $F_2$ , thirty four  $BC_1F_1$  and promising homozygous recessive null KTI free 11  $BC_1F_2$  plants and are presented in Table 1 to Table 5.

Among the twenty six F<sub>2</sub> plants studied sixteen exhibited early flowering and maturity (all from Cross I, II, V and VI); however F<sub>2</sub> from Phule Sangam (Cross III and IV) were late to flower and mature. Twenty Two (except 4 plants) from all crosses were determinate in growth habit. All F<sub>2</sub> plants from all crosses had reduced plant height, however in plants from Cross I, II, V and VI height reduction was more severe (average of 22 cm) even as compared to dwarfed parents NRC101 (41 cm) and NRC102 (38 cm). Twelve F<sub>2</sub> plants exhibited yellow seed hilum colour like the donor NRC parents, while rest 14 (including all 5 from Cross VI) exhibited brown colour like recurrent parent. Sixteen F2 plants exhibited shiny seed lusture like donor NRC parents (including all from Cross-I and Cross-VI). Fourteen plants exhibited erect plant type (including all from Cross-I and V) like donor NRC parents (including all from Cross-I and Cross-VI). Fourteen plants exhibited erect plant type (including all from Cross-I and V) like the donor NRC parents. Pods shattering was observed in 7 plants; while white coloured flowers were observed in four plants. Pod pubescence trait was absent in 15 plants.

In BC<sub>1</sub>F<sub>1</sub> generation, thirty four plants were studied, of which nine plants were early and 3 plants were medium in flowering. Ten plants exhibited early maturity; while 3 plants exhibited medium maturity. 16 plants exhibited maximum 100-seed weight, with all P. Agrani derived plants showing seed weight improvement. Thirteen plants were spherical in seed shape; while twenty two plants were having shiny seed lusture. Nine BC<sub>1</sub>F<sub>1</sub> plants had erect plant habit with rest of them being semi-erect. Eight plants exhibited determinate growth habit. Five BC<sub>1</sub>F<sub>1</sub> plants had white coloured flowers. Twenty one plants had yellow pod (with 5 having brown spots); 34 plants had brown pods (with 3 of them having black spots). 8 plants observed reduced plant height. In ten plants pod pubencensce was absent.

Among the of eleven KTI free null allele possessing  $BC_1F_2$  plants studied, all of them exihibited early flowering, with 8 plants had early maturity. All of them were determinate

growth type and were semisecret; while nine of them exihibited reduced plant height. All of them had spherical seed shape with shiny seed lusture and with yellow seed hilum colour. Phule Agrani derived plants showed improvement of seed weight. All of them had non shattering pod. Eight plants had pointed leaf while three plants observed the round ovate; with lanceolate habit from NRC102.

| Sr.<br>no | Cross<br>Name | Fl.<br>Colour | Seed<br>Colour | Pod<br>pubsecnce | Pod<br>pub.<br>Colour | GT | Pod colour  | D<br>M | D<br>F | 100<br>SW | _         | Colour |      | Seed Hilum<br>Colour |       |    | Pod<br>Shatter | Leaf<br>Shape |
|-----------|---------------|---------------|----------------|------------------|-----------------------|----|-------------|--------|--------|-----------|-----------|--------|------|----------------------|-------|----|----------------|---------------|
| P1        | P. Agrani     | Pu            | Y              | P (less)         | Gy                    | ID | Y           | 102    | 54     | 10.6      | Eliptical | G      | 77.6 | Brown                | Dull  | se | Non Sh         | Ro            |
| P2        | P.<br>Sangam  | Pu            | Y              | P (less)         | Gy                    | ID | Br          | 113    | 58     | 17.6      | Eliptical | G      | 80.7 | Brown                | Dull  | se | Non Sh         | L             |
| P3        | P. Kimya      | Pu            | Y              | P (less)         | Gy                    | ID | Br/Bl       |        |        |           | Eliptical | Dg     | 92   | Brown                | Dull  |    | Non Sh         | Ro            |
| P4        | NRC-101       | W/LP          | Y              | А                |                       | D  | Br          |        |        |           | Spherical |        | 41   | Yellow               | Shiny | Er | Non Sh         | Ro            |
| P5        | NRC-102       | Pu            | Y              | А                |                       | D  | Y           | 91     | 32     | 17.47     | Spherical | Dg     | 38   | Yellow               | Shiny | Er | Non Sh         | Ро            |
| 1         | Cross-I       | Pu            | Y              | P (less)         | Gy                    | ID | Y           | 103    | 53     | 11.4      | Spherical |        | 60   | Yellow               | Shiny |    | Non Sh         | Ro            |
| 2         | Cross-I       | Pu            | Y              | А                |                       | D  | Y           | 97     | 45     | 16        | Spherical | Dg     | 26   |                      | Shiny |    | Non Sh         | Ро            |
| 3         | Cross-I       | Pu            | Y              | P (Less)         | Gy                    | ID | Y           | 103    | 53     | 19.4      | Spherical | G      | 62   | Yellow               | Shiny | Se | Non Sh         | Ro            |
| 4         | Cross-I       | Pu            | Y              | P (less)         | Gy                    | ID | Y           | 103    | 53     |           | Eliptical |        | 50   | Yellow               | Shiny | Se | Non Sh         | Ro            |
| 5         | Cross-II      | Pu            | Y              | А                |                       | D  | Y           | -      | 42     | 14        | Spherical | Dg     | 19   | Brown                | Shiny | Er | Non Sh         | Ро            |
| 6         | Cross-II      | Pu            | Y              | А                |                       | ID | Y           | 98     |        |           | Spherical | Dg     | 47   | Brown                | Dull  | Er | Non Sh         | Ро            |
| 9         | Cross-III     | Pu            | Y              | P (Less)         | Gy                    | ID | Y & Br Spot | 116    | 59     | 14        | Eliptical | G      | 60   | Yellow               | Shiny | Se | Non Sh         | L             |
| 10        | Cross-III     | Pu            | Y              | P (Less)         | Gy                    | ID | Y & Br Spot | 116    | 61     |           | Eliptical | G      | 50   | Brown                | Shiny | Se | Non Sh         | L             |
| 11        | Cross-I       | W             | Y              | А                |                       | D  | Y           | 97     | 39     | 10        | Spherical | Dg     | 42   | Brown                | Shiny | Er | Non Sh         | Ро            |
| 21        | Cross-I       | W             | Y              | А                |                       | D  | Y           | 100    | 43     | 12.6      | Sherical  | Dg     | 32   | Yellow               | Shiny | Er | Non Sh         | Ро            |
| 23        | Cross-II      | Pu            | Y              | А                |                       | ID | Y           | 101    | 53     | 10.3      | Eliptical | G      | 60   | Brown                | Dull  | Se | Non Sh         | Ro            |
| 24        | Cross-II      | Pu            | Y              | А                |                       | D  | Y           | 94     | 44     | 12        | Spherical | Dg     | 36   | Brown                | Shiny | Er | Non Sh         | Ро            |
| 25        | Cross-II      | Pu            | Y              | Р                | Gy                    | ID | Y           | 100    | 48     | 12        | Spherical | G      | 90   | Gray/ yellow         | Shiny | Se | Non Sh         | L             |
| 36        | Cross-VI      | Pu            | Y              | P (Less          | Gy                    | ID | Y           | 113    | 60     | 12        | Eliptical | G      | 40   | Yellow               | Dull  | Se | Non Sh         | L             |
| 38        | Cross-VI      | Pu            | Y              | P (Less)         | Gy                    | ID | Y           | 113    | 60     | 11.4      | Eliptical |        | 74   | Yellow               | Shiny | Se | Non Sh         | L             |
| 39        | Cross-VI      | Pu            | Y              | Р                | Gy                    | ID | Y           | 113    | 60     | 11        | Eliptical | G      | 70   | Yellow               | Shiny | Se | Non Sh         | L             |
| 40        | Cross-VI      | Pu            | Y              | P (Less)         | Gy                    | ID | Br spot     | 113    | 62     | 14        | Eliptical | G      | 97   | Yellow               | Dull  | Se | Non Sh         | L             |
| 41        | Cross-VI      | Pu            | Y              | P (Less)         | Gy                    | ID | Y &Br Spot  | 112    | 60     | 15        | Eliptical | G      | 76   | Brown                | Dull  | Se | Non Sh         | L             |

## Table 3: Contd.....

| Sr. | Cross    | Fl.    | Seed   | Pod       | Pod    | GT | Pod colour   | D   | D  | 100           | Seed      | Leaf   | Plant | Seed   | Seed   | Gr. | Pod     | Leaf  |
|-----|----------|--------|--------|-----------|--------|----|--------------|-----|----|---------------|-----------|--------|-------|--------|--------|-----|---------|-------|
| no  | Name     | Colour | Colour | pubsecnce | pub.   |    |              | М   | F  | $\mathbf{SW}$ | Shape     | Colour | Ht.   | Hilum  | Lust   | Hab | Shatter | Shape |
|     |          |        |        |           | Colour |    |              |     |    |               |           |        |       | Colour |        |     |         |       |
| 42  | Cross-VI | Pu     | Y      | P (less)  | Gy     | ID | Y            | 113 | 61 | 14            | Eliptical | G      | 60    | Brown  | Shiny  | Se  | Non Sh  | L     |
| 43  | Cross-VI | Pu     | Y      | P (Less)  | Gy     | ID | Y            | 113 | 62 | 10.3          | Eliptical | G      | 90    | Brown  | Dull   | Se  | Non Sh  | L     |
| 46  | Cross-VI | Pu     |        | P (Less)  | Gy     | ID | Y & Br spot  | 113 | 62 | 14.5          | Eliptical | G      | 90    | yellow | Dull   | Se  | Non Sh  | L     |
| 48  | Cross-V  | W      | Y      | А         |        | D  | Br & Bl spot | 96  | 44 | 9             | Eliptical | Dg     | 21    | yellow | Dull   | Er  | Non Sh  | Ро    |
| 49  | Cross-V  | W      | Y      | А         |        | D  | Br & Bl spot | 92  | 39 | 20            | Spherical | Dg     | 23    | Brown  | Shinny | Er  | Non Sh  | Ро    |
| 50  | Cross-V  | W      | Y      | А         |        | D  | Br & Bl spot | 100 | 48 | 13            | Eliptical | Dg     | 30    | Yellow | Shiny  | Er  | Non Sh  | Ро    |
| 51  | Cross-V  | Pu     | Y      | P (Less)  | Gy     | ID | Br           | 109 | 54 | 16            | Sphrical  | G      | 60    | Yellow | Shiny  | Se  | Non Sh  | Ro    |
| 52  | Cross-V  | Pu     | Y      | P (Less)  | Gy     | ID | Br           | 109 | 56 | 14.8          | Spherical | G      | 60    | yellow | Shiny  | Se  | Non Sh  | Ro    |
| 53  | Cross-V  | Pu     | Y      | P Less)   | Gy     | ID | Br           | 109 | 59 | 14.2          | Eliptical | G      | 48    | Brown  | Dull   | Se  | Non Sh  | Ro    |
| 54  | Cross-VI | Pu     | Y      | P (Less)  | Gy     | ID | Br           | 104 | 54 | 16.3          | Eliptical | G      | 42    | Brown  | Shiny  | Se  | Non Sh  | Ro    |
| 55  | Cross-VI | Pu     | Y      | P (Less)  | Gy     | ID | Br           | 104 | 54 | 13            | Eliptical | Dg     | 30    | Brown  | Dull   | Se  | Non Sh  | Ro    |
| 56  | Cross-VI | Pu     | Y      | P (Less)  | Gy     | ID | Br           | 104 | 54 | 16            | Eliptical | G      | 60    | Brown  | Shiny  | Se  | Non Sh  | Ro    |
| 57  | Cross-VI | Pu     | Y      | P (Less)  | Gy     | ID | Br           | 109 | 59 | 16.9          | Eliptical | G      | 30    | Brown  | Dull   | Se  | Non Sh  | Ro    |
| 58  | Cross-VI | Pu     | Y      | P (Less)  | Gy     | ID | Br           | 109 | 53 | 19            | Eliptical | G      | 42    | Brown  | Dull   | se  | Non Sh  | Ro    |
| 59  | Cross-VI | Pu     | Y      | P (less)  | Gy     | ID | Br           | 109 | 58 | 15.6          | Spherical | G      | 60    | Brown  | Shiny  | Se  | Non Sh  | Ro    |
| 60  | Cross-VI | Pu     | Y      | P (less)  | Gy     | ID | Br           | 109 | 53 | 13.9          | Eliptical | G      | 68    | Yellow | Shiny  | se  | Non Sh  | Ro    |

Table 4: Morphological details of BC1F2 titi free plants compared with parents as DUS characters.

| Plant No           | D to<br>F | D to M | РH | 100 sed wt | SYP   | GT | SL    | SS        | SHL    | Leaf<br>Shape | Gr. Hab | Pod Shatter |
|--------------------|-----------|--------|----|------------|-------|----|-------|-----------|--------|---------------|---------|-------------|
| P. Agrani          | 54        | 102    | 74 | 10.59      | 15.59 | ID | Dull  | Eliptical | Brown  | Ro            | Se      | Non Sh      |
| P. Sangam          | 60        | 113    | 74 | 17.57      | 18    | ID | Dull  | Eliptical | Brown  | Ро            | Se      | Non Sh      |
| P. Kimya           | 55        | 109    | 72 | 16.47      | 17.34 | ID | Dull  | Eliptical | Brown  | Ro            | Se      | Non Sh      |
| NRC 101            | 30        | 90     | 41 | 18.2       | 16    | D  | Shiny | Spherical | Yellow | Ро            | Er      | Sh          |
| NRC 102            | 32        | 92     | 38 | 17.27      | 18    | D  | Shiny | Spherical | Yellow | Ро            | Er      | Sh          |
| F <sub>2</sub> #21 | 48        | 97     | 28 | 11.38      | 13    | D  | Shiny | Spherical | Yllow  | Ро            | Er      | Non Sh      |

Journal of Pharmacognosy and Phytochemistry

| F <sub>2</sub> #31 | 42 | 92  | 11 | 14.14 | 15   | D | Shiny | Spherical  | Yellow | Ро | Semi Er | Non Sh |
|--------------------|----|-----|----|-------|------|---|-------|------------|--------|----|---------|--------|
| F3#1               | 32 | 98  | 43 | 18    | 65   | D | Shiny | Spherical  | yellow | Ро | Semi Er | Non Sh |
| F4 #4              | 38 | 99  | 40 | 19.57 | 43.3 | D | Dull  | Sperical   | yellow | Ро | Semi Er | Non Sh |
| BC1F2 #5           | 45 | 101 | 55 | 12.7  | 15.6 | D | Shiny | Spherical  | Yellow | Ро | Semi Er | Non Sh |
| BC1F2#29           | 40 | 99  | 50 | 11.9  | 15   | D | Shiny | Sperical   | Yellow | Ро | Semi Er | Non Sh |
| BC1F2#31           | 45 | 100 | 45 | 12    | 16   | D | Shiny | Spherical  | Yellow | Ро | Semi Er | Non Sh |
| BC1F2#38           | 40 | 99  | 40 | 12.5  | 14   | D | Shiny | Spherical  | Yellow | Ро | Semi Er | Non Sh |
| BC1F2#48           | 39 | 100 | 45 | 12.7  | 15   | D | Shiny | Spherical  | Yellow | Ро | Semi Er | Non Sh |
| BC1F2#27           | 42 | 99  | 50 | 11.5  | 16   | D | Shiny | Spherical  | Yellow | Ро | Semi Er | Non Sh |
| BC1F2#33           | 42 | 98  | 45 | 12    | 15   | D | Shiny | Spherical  | yellow | Ро | Semi Er | Non Sh |
| BC1F2#34           | 45 | 99  | 50 | 11.9  | 14   | D | Shiny | Sphrical   | yellow | Ро | Semi Er | Non Sh |
| BC1F2#37           | 50 | 103 | 70 | 17.5  | 19.2 | D | Shiny | Spherical  | yellow | Ro | Semi Er | Non Sh |
| BC1F2#58           | 51 | 104 | 68 | 17    | 19   | D | Shiny | Sphericcal | yellow | Ro | Semi Er | Non Sh |
| BC1F2#59           | 48 | 102 | 70 | 18    | 20   | D | Shiny | Spherical  | yellow | Ro | Semi Er | Non Sh |

Table 5: Morphological Details of F2 Plants Compared with Parents As Per Dus Characters.

| Cross Name   | Flr<br>Colour | Seed<br>Colour | Pod<br>pubsecnce | Pod pub.<br>Colour | GT | Pod<br>colour | Days<br>Mat. | Days<br>Fl. | 100<br>Seed<br>Wt | Plant<br>Ht. | Seed<br>Hilum<br>Colour | Seed<br>Lust | Gr.<br>Hab | Pod<br>Shatter | Leaf<br>Shape |
|--------------|---------------|----------------|------------------|--------------------|----|---------------|--------------|-------------|-------------------|--------------|-------------------------|--------------|------------|----------------|---------------|
| P1 P.Agrani  | Pu            | Yellow         | P (less)         | Gy                 | ID | Y             | 102          | 54          | 10.6              | 74           | Brown                   | Dull         | Se         | Non Sh         | Ro            |
| P2 P.Sangam  | Pu            | Yellow         | P (less)         | Gy                 | ID | Br            | 113          | 60          | 17.6              | 74           | Brown                   | Dull         | Se         | Non Sh         | Ро            |
| P3 P.Kimya   | Pu            | Yellow         | P (Less)         | Gy                 | ID | Br/Blakish    | 109          | 55          | 16.5              | 72           | Brown                   | Dull         | Se         | Non Sh         | Ro            |
| P4 NRC-101   | W/Pu          | Yellow         | P (less)         | Gy                 | D  | Y/Br          | 90           | 30          | 14.6              | 41           | Yellow                  | Shiny        | Er         | Sh             | Ро            |
| P5 NRC-102   | Pu            | Yellow         | Less             | Gy                 | D  | Y             | 90           | 32          | 17.3              | 38           | Yellow                  | Shiny        | Er         | Sh             | Lan           |
| C-I          |               |                |                  |                    |    | Phul          | e Agra       | ni x Nl     | RC 101            |              |                         |              |            |                |               |
| Cross- I 1   | Pu            | Yellow         | Р                | Gy                 | D  | Y             | 92           | 42          | 11.8              | 28           | yellow                  | Shiny        | Er         | Non Sh         | Ro            |
| Cross- I 2   | Pu            | Yellow         | Р                | Gy                 | D  | Y             | 97           | 44          | 11.8              | 22           | yellow                  | Shiny        | Er         | Non Sh         | Ro            |
| Cross-I3     | Pu            | Yellow         | Р                | Gy                 | ID | Y             | 98           | 48          | 12                | 17           | Brown                   | Shiny        | Er         | Non Sh         | Ro            |
| Cross-I 21   | Pu            | Yellow         | Р                | Gy                 | D  | Y             | 97           | 45          | 11.4              | 28           | Brown                   | Shiny        | Er         | Non Sh         | Ro            |
| Cross- I 27  | Pu            | Yellow         | Р                | Gy                 | D  | Y             | 91           | 42          | 11.4              | 19           | yellow                  | Shiny        | Er         | Shatering      | Ro            |
| C-II         |               |                |                  |                    |    | Phul          | e Agra       | ni x Nl     | RC 102            |              |                         |              |            |                |               |
| Cross- II 31 | Pu            | Yellow         | А                | Gy                 | D  | DY            | 92           | 42          | 10.2              | 19           | yellow                  | Shiny        | Er         | Sh             | Ro            |
| Cross- II 32 | Pu            | Yellow         | А                | Gy                 | ID | DY            | 98           | 48          | 10                | 38           | Brown                   | Dull         | Se         | Non Sh         | Ро            |
| Cross- II 5  | Pu            | Yellow         | А                | Gy                 | D  | DY            | 92           | 42          | 15                | 18           | yellow                  | Shiny        | Er         | Sh             | Lan           |
| C-V          |               |                |                  |                    |    | Phu           | e Kim        | ya x Nl     | RC 101            |              |                         |              |            |                |               |
| Cross V 111  | W             | Yellow         | Р                | Gy                 | D  | Br            | 97           | 43          | 12.1              | 29           | yellow                  | Shiny        | Er         | Sh             | Ro            |
| Cross- V 115 | Pu            | Yellow         | Р                | Gy                 | D  | Br            | 96           | 48          | 10                | 13           | Brown                   | Dull         | Er         | Non Sh         | Ro            |
| Cross- V 3   | Pu            | Yellow         | Р                | Gy                 | D  | Br            | 94           | 47          | 16                | 17           | Brown                   | Dull         | Er         | Sh             | Ro            |

| Cross Name    | Flr<br>Colour | Seed<br>Colour | Pod<br>pubse<br>cnce | Pod pub.<br>Colour | GT               | Pod<br>colour     | Days<br>Mat. | Days<br>Fl. | 100 Seed<br>Wt | Plant<br>Ht. | Seed<br>Hilum<br>Colour | Seed<br>Lust | Gr.<br>Hab | Pod<br>Shatter | Leaf<br>Shap<br>e |
|---------------|---------------|----------------|----------------------|--------------------|------------------|-------------------|--------------|-------------|----------------|--------------|-------------------------|--------------|------------|----------------|-------------------|
| C-VI          |               |                |                      |                    |                  |                   | Phu          | ıle Kim     | ya x NRC       | 102          |                         |              |            |                |                   |
| Cross- VI 119 | W             | Yellow         | Α                    |                    | ID               | Br Spot           | 98           | 44          | 11.3           | 42           | Brown                   | Shiny        | Se         | Sh             | Ро                |
| Cross- VI 121 | W             | Yellow         | Α                    |                    | D                | Br                | 92           | 43          | 13             | 19           | Brown                   | Shiny        | Er         | Non Sh         | Ро                |
| Cross-VI 6    | Pu            | Yellow         | Р                    | Gy                 | D                | Y                 | 95           | 44          | 16             | 21           | Brown                   | Shiny        | Er         | Non Sh         | Ro                |
| Cross -VI 7   | W             | Yellow         | Α                    |                    | D                | Y                 | 94           | 44          | 13             | 19           | Brown                   | Shiny        | Se         | Non Sh         | Ро                |
| Cross- VI 9   | Pu            | Yellow         | Α                    |                    | D                | Y                 | 92           | 42          | 16             | 21           | Brown                   | Shiny        | Er         | Sh             | Ро                |
| Cross-III     |               |                |                      |                    |                  |                   | Phu          | le Sang     | am x NRC       | C 101        |                         |              |            |                |                   |
| Cross-III     | Pu            | yellow         | Α                    |                    |                  | NA                | 113          | 64          | 12.2           | 42           | Brown                   | Dull         | se         | Non Sh         | Ро                |
| Cross-III     | Pu            | yellow         | Α                    |                    | D                | NA                | 113          | 64          | 10             | 41           | yellow                  | Dull         | se         | Non Sh         | Ро                |
| Cross-III     | Pu            | yellow         | Α                    |                    | D                | NA                | 119          | 64          | 11             | 45           | Yellow                  | Dull         | se         | Non Sh         | Ро                |
| Cross-III     | Pu            | yellow         | р                    | Gy                 | D                | NA                | 108          | 65          | 10             | 41           | yellow                  | Dull         | Se         | Non Sh         | Ro                |
| Cross-III     | Pu            | yellow         | р                    | Gy                 | ID               | Yellow<br>Br Spot | 108          | 60          | 10.5           | 38           | yellow                  | Shiny        | Se         | Non Sh         | Ro                |
| Cross-III     |               |                |                      |                    |                  |                   | Phu          | le Sang     | am x NRC       | C 102        |                         |              |            |                |                   |
| Cross-IV      | Pu            | yellow         | р                    | Gy                 | D                | NA                | 108          | 63          | 13             | 50           | yellow                  | Shiny        | Se         | Non Sh         | Ро                |
| Cross-IV      | Pu            | yellow         | Α                    | Gy                 | D                | NA                | 113          | 63          | 11             | 40           | Yellow                  | Shiny        | Se         | Non Sh         | Ро                |
| Cross-IV      | Pu            | yellow         | Α                    | Gy                 | D                | Na                | 113          | 63          | 10.7           | 40           | Brown                   | Dull         | Se         | Non Sh         | La                |
| Cross-IV      | Pu            | yellow         | А                    | Gy                 | Not<br>Available | NA                | 113          | 63          | 12.2           | 35           | Brown                   | Dull         | Er         | Non Sh         | Ро                |
| Cross-IV      | Pu            | Yellow         | Α                    | Gy                 | N A              | NA                | NA           | 64          | 12             | 45           | Brown                   | Dull         | Se         | Non Sh         | Ро                |

# Table 5: Contd.....

## Reference

- 1. Anonymous, World Soybean Production by the Soybean Processors Association of India, 2017a.
- 2. Anonymous, Survey of Soybean Crop Kharif 2017 by the Soybean Processors Association of India. http://www.sopa.org/news/survey-of-soybean-crop-

Kharif-Anonymous,

www.ncbi.n/nih.gov/Taxonomy/Browsers, 2017c.

- 3. Anoymous. Annual Report 2017-18 by Indian Council of Agriculture Research and National Research Centre on Soybean, Indore, 2017b.
- Carlson JB, Lersten NR. Reproductive morphology in Soybeans: Improvement production and uses. Wilcox JR. ed. American Society of Agronomy Monograph series no 1b, Madison, Wisconsin, USA, 1987, 95-134.
- Nagraj G. Quality and utility of oilseeds. Directorate of Oilseeds Research Publication (ICAR) Rajendranagar, Hyderabad. 1995, 36-40.
- Ramteke R, Kumar V, Murlidharan P, Agarwal AK. Study on genetic variability and traits interrelationship among released soybean varieties of India [*Glycine max* (L.) Merrill] Electronic Journal of Plant Breeding. 2010; 1(6):1483-1487.