

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(6): 624-627 Received: 25-09-2019 Accepted: 29-10-2019

Mahadevi

Department of Pant Pathology, University of Agricultural Sciences, Raichur, Karnataka, India

Sreedevi S Chavan

AICRP on Groundnut, MARS, University of Agricultural Sciences, Raichur, Karnataka, India

Gururaj Sunkad

Department of Pant Pathology, University of Agricultural Sciences, Raichur, Karnataka, India

Ashwatanarayana DS

Department of Pant Pathology, University of Agricultural Sciences, Raichur, Karnataka, India

Kisan B

Department of Agricultur Biotechnology, University of Agricultural Sciences, Raichur, Karnataka, India

Corresponding Author: Mahadevi

Department of Pant Pathology, University of Agricultural Sciences, Raichur, Karnataka, India

Surveys for incidence of collar rot of groundnut in North Eastern parts of Karnataka

Mahadevi, Sreedevi S Chavan, Gururaj Sunkad, Ashwatanarayana DS and Kisan B

Abstract

A field survey was carried out during *kharif* 2018-19, to assess the incidence of collar rot in Hyderabad-Karnataka region. In Raichur district, maximum incidence was observed in Kurdi village of Manvi taluk, Masarkal and Kottadoddi village of Deodurga taluk with an incidence of 20.00 per cent, respectively and least incidence was recorded in Chandrabanda village of Raichur taluk (12.00%). In Koppal district maximum disease incidence of 25.00 per cent was recorded in Myadineri village of Yalburga taluk followed by Hyati village of Koppal taluk (22.00 per cent) and lowest incidence was observed in Ganganala village of Kushtagi taluk (11.00%). In Ballari district maximum disease incidence of 22.00 per cent was recorded in Siruguppa local followed by Mudenur village of Siruguppa taluk and lowest incidence was observed in Hagari Bommanahalli (10.00%). In Yadgir district maximum disease incidence of 23.00 per cent was recorded in Gurmitkal village of Yadgir taluk followed by Kolur village of Shahapur taluk (17.83 per cent) and lowest incidence was observed in Darmapura village and Yadgir local of Yadgir taluk (10.00%, respectively).

Keywords: Groundnut, survey, Aspergillus niger and per cent disease incidence

Introduction

Groundnut or peanut (*Arachis hypogaea* L.), is a very important legume crop of tropical and sub tropical areas of the world, described in 1753 by Linnaeus (Pattee and Young, 1982) ^[7]. It is originated from Brazil in South America and was introduced in India by the Portuguese traders in the middle of sixteenth century. In India, it is one of the most important oilseed crops in terms of production among oilseeds and is rightly called as the 'king of oilseeds'. It is sixth most important oilseed crop in the world. There by ranked second largest producer of groundnut after China.

On an average, groundnut seed contains 45 per cent of oil and 26 per cent of protein and its kernels are relished either as snack, roasted or salted or raw form or also in the form of peanut butter. India exports groundnut kernels, shells, hand- picked groundnut and in the form of oil cake. Its haulms and leaves serve as rich source of cattle feed and raw material for preparation of silage. It plays an important role in the dietary requirements of resources for poor woman and children. Its shells are used as fuel and as the filler in animal feeds and fertilizers. They are also used in making cardboards. Cultivation of groundnut helps to improve soil fertility, as it leaves behind a substantial amount of nitrogen in the soil.

Groundnut is infected by several soil borne pathogens causing diseases like collar rot, *Sclerotium* wilt and dry root rot etc., which limit the yield considerably. These diseases largely account for the death of the seedlings. Collar rot caused by *A. niger* van Teighem is one of the most important disease of groundnut which is more extensive in the *kharif* than the *rabi* and summer seasons and causes more damage in sandy loam and medium black soil. Annual world yield loss caused by collar rot is more than 10 per cent (Pande and Rao, 2000) ^[6] and is more prevalent in soils with low moisture content and high temperature, approximately 30 °C (Kishore *et al.*, 2007) ^[5]. Keeping this in view, an attempt was made to conduct a roving survey was conducted in four districts of North Eastern Karnataka regions *viz.*, Raichur, Ballari, Koppal and Yadgir during *kharif* 2018-19.

Material and Methods

A roving survey was carried out to assess the incidence of collar rot disease of groundnut. The survey was conducted during *kharif* 2018-19 in four talukas of Raichur district (Deodurg, Manvi, Lingasugur, Raichur, three talukas of Koppal district (Koppal, Kustagi, Yalaburga), three talukas of Yadgir district (Yadgir, Shahapur, Shoraput) and four talukas of Ballari (Siruguppa, HB Halli, Kudligi, Hoovinahadagali) of North Eastern Karnataka to know the

incidence of collar rot disease of groundnut in the farmer's field. In each district, three to four major groundnut growing talukas were selected and in each taluk three to five villages were surveyed comprising two to three fields in each village. For recording the disease, five spots in each field and 100 plants at each spot were selected randomly. The total number of plants present and number of plants showing collar rot symptoms due to *A. niger* at each spot were counted and recorded. Later, the per cent collar rot incidence in these locations was calculated using following formula.

Disease incidence (%) =
$$\frac{\text{Number of plants infected}}{\text{Total number of plants observed}} \times 100$$

Table 1: The per cent disease incidence was assessed by using 0-5 scale (Rohtas, 2014) [8] as described below.

Scale	Disease Reaction	Disease Incidence (%)		
0	Immune	0		
1	Resistant	≤ 10		
2	Moderately Resistant	10-20		
3	Moderately Susceptible	20-40		
4	Susceptible	40-60		
5	Highly Susceptible	> 60		

Results and Discussion

Roving survey was carried out during *kharif* season of 2018-19 in groundnut growing areas of Raichur, Koppal, Yadgir and Ballari districts of North Eastern Karnataka to know the incidence of collar rot diseases of groundnut in the farmer's field. The groundnut stem showing typical symptoms of collar rot were collected and isolation of the fungus was done by standard tissue isolation method as described in 'Materials and Methods'. The mean per cent disease incidence (PDI) recorded at various locations is presented in Table 2 and 2.

In Raichur district, maximum incidence was observed in Kurdi village of Manvi taluk, Masarkal and Kottadoddi village of Deodurga taluk with an incidence of 20.00 per cent, respectively and least incidence was recorded in Chandrabanda village of Raichur taluk (12.00%). In Koppal district maximum disease incidence of 25.00 per cent was recorded in Myadineri village of Yalburga taluk followed by Hyati village of Koppal taluk (22.00%) and lowest incidence was observed in Ganganala village of Kushtagi taluk (11.00%). In Ballari district maximum disease incidence of 22.00 per cent was recorded in Siruguppa local followed by

Mudenur village of siruguppa taluk, Kadalabalu village of Hagari bommanahalli and Halageri village of Huvinahadagali about 20.00 per cent incidence and lowest incidence was observed in Hagari bommanahalli (10.00%). In Yadgir district maximum disease incidence of 23.00 per cent was recorded in Gurmitkal village of Yadgir taluk followed by Kolur village of Shahapur taluk about 17.83 per cent incidence and lowest incidence was observed in Darmapura village and Yadgir local of Yadgir taluk (10.00%).

Among all different taluks surveyed in Raichur district, maximum incidence of disease was observed in Deodurga taluk (17.50%) followed by Lingasugur taluk (16.66%) and least incidence was recorded in Raichur taluk (14.75%). In Koppal district, maximum disease incidence was noticed in Yalburga taluk (19.25%) followed by Koppal taluk (18.75%) and least incidence was observed in Kustagi taluk (13.20%). In Ballari district, Siraguppa taluk recorded maximum disease incidence (18.75%)followed by HB halli Hoovinahadagali (16.00%) and least incidence was observed in Kudligi (15.50%). In Yadgir district, highest disease incidence was observed in Shahapur (17.83%) followed by Shorapura taluk (16.33%) and least incidence was observed in Yadgir taluk (15.25%).

Among all the districts maximum disease incidence was noticed in Koppal district (17.06%) followed by Ballari district (16.56%) and least incidence was recorded in Raichur district (16.22%) (Table 3).

Further incidence of this disease was more in ensuing crop season, because of the soil borne nature of this disease. Similarly in Koppal district monocropping of groundnut is in practiced over a large area resulting in high incidence of collar rot. Therefore, in areas where groundnut monocropping was practiced, comprehensive strategies are to be implemented in managing these soil borne diseases.

In the present study differences in collar rot incidence was observed in respect of different soil types. The results in (Table 2) showed that sandy soils recorded maximum collar rot incidence compared to clay soils and it was observed that incidence of diseases was more in *Kharif* season compared to *Rabi* season. Higher incidence of the disease might be attributed to the less competitive saprophytic ability of the pathogen at higher moisture holding capacity associated with black soils. The results were supported by Gibson (1953) ^[4], Chohan (1969) ^[3], Shreedevi (2017) ^[9], Pande and Rao (2000) ^[6] and Ainshworth *et al.* (1964) ^[1].

Table 2: Survey for collar rot incidence in different districts of North Eastern Karnataka during 2018-19.

District	Taluk	Village	Season	Variety	Crop situation	Soil type	Period of survey (DAS)	Collar rot (%)
	Raichur	Raichur	Kharif	KRG1	Irrigated	Red	15	16.00
		Jammaladinni	Kharif	KRG1	Irrigated	Red	15-20	18.00
		Chandrabanda	Rabi	TMV-2	Rainfed	Red	30-35	12.00
		Yapaladinni	Rabi	TMV-2	Rainfed	Black	25-30	13.00
	Manvi	Korvi	Kharif	TMV-2	Irrigated	Red	15-20	18.00
		Kallur	Rabi	Local	Rainfed	Black	20-30	13.00
		Kasbecamp	Kharif	Local	Irrigated	Red	15-20	15.00
		Kurdi	Rabi	Local	Rainfed	Red	20-25	20.00
Raichur		Seekal	Kharif	TMV-2	Irrigated	Black	30-35	14.00
Kaichui	Lingasugur	Santhekallur	Kharif	TMV-2	Irrigated	Red	20-25	16.00
		Karadkal	Kharif	TMV-2	Irrigated	Red	25	16.00
		Kuppigudda	Kharif	TMV-2	Irrigated	Red	25-30	18.00
	Deodurga	Masarkal	Kharif	TMV-2	Rainfed	Red	15-20	20.00
		Gabbur	Kharif	TMV-2	Irrigated	Red	15-20	18.00
		Piligunda	Rabi	TMV-2	Irrigated	Red	20	18.00
		Arakera	Rabi	TMV-2	Irrigated	Black	15-20	13.00
		Sasvigera	Rabi	Local	Irrigated	Black	15-20	16.00
		Kottadoddi	Rabi	Local	Irrigated	Red	15-20	20.00

				Me	an			16.22
		Hyati	Kharif	DSG1	Rainfed	Red	15-25	22.00
Koppal		Koppal local	Kharif	TMV-2	Rainfed	Red	20-25	18.00
	Koppal	Halagera	Kharif	TMV-2	Irrigated	Red	15-20	16.00
		Bhairapur	Kharif	DSG1	Rainfed	Red	25	19.00
		Tavaragera	Rabi	TMV2	Rainfed	Red	20	13.00
		Kustagi local	Rabi	Local	Rainfed	Red sandy	25-30	12.00
	Kushtagi	Ganganala	Rabi	TMV-2	Rainfed	Red	30	11.00
		Turvihal	Rabi	Local	Rainfed	Red sandy	20	15.00
		Lingadalli	Rabi	TMV2	Rainfed	Red	20-25	15.00
		Kamalapur	Kharif	DSG1	Rainfed	Red sandy	15-20	16.00
		Myadneri	Kharif	DSG1	Rainfed	Red sandy	15-20	25.00
	Yalburga	Narsapur	Kharif	JL24	Rainfed	Red	15-20	20.00
		Uppaladinni	Kharif	JL24	Rainfed	Red	25-30	16.00
		Mean						
		Sirguppa local	Kharif	Local	Rainfed	Red sandy	15-20	22.00
	a.	Mudenur	Kharif	Local	Rainfed	Red sandy	15-20	20.00
	Sirguppa	Dasapur	Kharif	K6	Rainfed	Red sandy	20	18.00
		Beerahalli	Kharif	Local	Irrigated	Red sandy	15-25	15.00
		Kudligi	Rabi	Local	Irrigated	Red sandy	25-30	19.00
Ballari	TZ 11' '	Hosahalli	Rabi	TMV-2	Rainfed	Red sandy	18-20	15.00
	Kudligi	Bevoor	Rabi	TMV-2	Rainfed	Red sandy	20	15.00
		Sivapura	Rabi	Local	Rainfed	Red sandy	25-30	13.00
		H. B. Halli local	Kharif	K6	Rainfed	Red	30	10.00
	H. B. Halli	Darmapura	Kharif	Local	Iriigated	Red	15-20	18.00
		Kadalabalu	Kharif	K6	Rainfed	Red	15-20	20.00
	Huvina hadagali	Itagi	Rabi	Local	Rainfed	Red	25-30	13.00
		Halageri	Rabi	Local	Irrigated	Red	15-20	20.00
		Hadagali local	Kharif	Local	Rainfed	Red	15-20	15.00
	Mean							16.56
Yadagir	Shahapur	Shahapur	Kharif	TMV-2	Rainfed	Red	15-25	19.00
		Rastapur	Kharif	Local	Irrigated	Red	15-20	16.00
		Kolur	Kharif	DSG-1	Rainfed	Red sandy	15-25	21.00
		Markel	Kharif	Local	Rainfed	Red	25	15.00
		Hattigudur	Kharif	Local	Rainfed	Red sandy	30	18.00
		Bheemarayanagudi	Kharif	Local	Rainfed	Red	15-20	18.00
	Shorapur	Shorapur	Kharif	TMV-2	Irrigated	Red	25-30	16.00
		Kembavi	Kharif	Local	Rainfed	Red sandy	20-30	18.00
		Lakshmipura	Kharif	Local	Rainfed	Black	25	15.00
	Yadgiri	Gurmitkal	Kharif	TMV-2	Rainfed	Red loamy	30	23.00
		Darmapur	Kharif	Local	Rainfed	Red loamy	15-25	10.00
		Yadgir local	Kharif	DSG1	Rainfed	Red sandy	20	10.00
		Siddapur	Kharif	Local	Rainfed	Red sandy	15-20	18.00
				Me	an			16.47

Table 3: Incidence of collar rot of groundnut in North Eastern districts of Karnataka during 2018-19.

District	Taluk	Mean PDI (Taluk)	Mean PDI (District)		
Raichur	Raichur	14.75	16.22		
	Deodurga	17.50			
	Manvi	16.00	10.22		
	Lingasugur	16.66			
Koppal	Koppal	18.75			
	Kustagi	13.20	17.06		
	Yalburga	19.25			
	Siruguppa	18.75			
	Kudligi	15.50			
Ballari	HB halli	16.00	16.56		
	Hoovina	16.00			
	hadagali	10.00			
	Shahapur	17.83	_		
Yadgir	Shorapur	16.33	16.47		
	Yadgiri	15.25			

Conclusion

Survey results showed that collar rot disease was more in sandy soils compared to clay soils and it was observed that incidence of diseases was more in *Kharif* season compared to

Rabi season. Highest incidence of collar rot was observed in Koppal district (17.06%) followed by Ballari district (16.56%) and least incidence was recorded in Raichur district (16.22%). Maximum incidence was recorded at Myadineri village of Yalburga taluk, Koppal district about 25 per cent, where the crop was grown in *Kharif* season under rainfed conditions which was comparatively higher than *Rabi* season. The present study revealed that there was a difference in disease incidence between the locations and different varieties.

References

- 1. Ainshworth LJ, Langley BC, Mian MAM, Wrenn CJ. Epidemiology of a seedling disease of Spanish peanut caused by *Aspergillus niger*. Phytopathol. 1964; 54:154-160.
- 2. Anonymous, 2017-18, http://www.indianstat.
- 3. Chohan JS. Survival of *Aspergillus niger* van Tieghem and soil factors influencing collar rot disease of groundnut. J Res. Punjab Agri. Univ. 1969; 4:634-640.
- 4. Gibson IAS. Crown rot seedling diseases of groundnut caused by A. niger II. Anomalour effect of orange

- mercurial seed dressings. Transation of British Myco, Soc. 1953; 36:324-334.
- 5. Kishore GK, Pande S, Harish S. Evaluation of essential oils and their components for broad-spectrum antifungal activity and control of late leaf spot and crown rot diseases in peanut. Pl. Dis. 2007; 91:375-379.
- 6. Pande S, Rao JN. Changing scenario of groundnut diseases in Andhra Pradesh, Karnataka and Tamil Nadu states of India. *Inter.* Arachis Newsletter. 2000; 20:42-44.
- 7. Pattee H, Young GT. Peanut Science and Technology. Yoakum, Texas 77995, USA, 1982.
- 8. Rohatas R, Saharan HS, Rathi AS, Management of collar rot of groundnut (*Arachis hypogaea* L.) caused by *Aspergillus niger* Van Teighem. *M. Sc.* (*Agri*) *Thesis*, Haryana Agril. Univ., Hissar, India, 2014, 15.
- Shreedevi S, Investigations on major soil borne diseases of groundnut with special emphasis on dry root rot caused by *Rhizoctonia bataticola* (Taub.) Butler. *M. Sc.* (*Agri*) *Thesis*. Univ. Agric. Sci., Raichur, Karnataka (India), 2017.