

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(3): 1482-1485 Received: 22-03-2019 Accepted: 23-04-2019

Gurrala Jayalakshmi

Assistant Professor, Department of Chemistry, Vignan Degree and PG College Pedapalakaluru Road, Guntur, Andhra Pradesh, India

Vejendla Anuradha

Professor, Department of Basic Sciences and Humanities VNITSW, Pedapalakaluru Road Guntur, Andhra Pradesh, India

Setty Ratna Kumari

Assistant Professor, Department of Basic Sciences and Humanities VNITSW Pedapalakaluru Road Guntur, Andhra Pradesh, India

K Kavitha Priya

Research Scholar Department of Chemistry Vignan Degree and PG College Pedapalakaluru Road, Guntur, Andhra Pradesh, India

Sakamuri Sivarambabu

Retd. Reader, Department of Chemistry, JKC College, Guntur, Andhra Pradesh, India

Correspondence Vejendla Anuradha Professor, Department of Basic Sciences and Humanities VNITSW, Pedapalakaluru Road Guntur, Andhra Pradesh, India

Attendiol, a new pentacyclic triterpenoid isolated from Caralluma attenuata root

Gurrala Jayalakshmi, Vejendla Anuradha, Setty Ratna Kumari, K Kavitha Priya and Sakamuri Sivarambabu

Abstract

From the root of *Caralluma attenuata* belonging to the family *Asclepiadaceae*, a novel pentacyclic triterpenoid was isolated and its structure was elucidated on the basis of spectroscopic data. It has two hydroxyl groups and named as *attendiol*. This is the first report of such novel pentacyclic triterpenoid from *Caralluma attenuata* root.

Keywords: Caralluma attenuata, Asclepiadaceae, Attendiol, pentacyclic triterpenoid

Introduction

Isolation and characterization of oxypregnane glycosides ^[1, 2], pregnane gylcosides ^[3-9], triterpene saponins ^[10], flavonoids ^[11], pregnane esters ^[12], bisdesmosidic glycosides ^[13, 14], flavone glycosides ^[15], were earlier reported from the same genus. In the course of our investigation on chemical constituents of *Carallumas* we have earlier isolated and reported three new triterpenoids ^[16-18]. In this paper we report the structural elucidation of another novel pentacyclic triterpenoid derivative *attendiol* from *Caralluma attenuata*.

Experimental

The plant material of *Caralluma attenuata* was collected in Tirumala forests during Jan -2017. MPs uncorrected IR v_{max}^{KBr} , UV l_{max}^{EtOH} , ¹HNMR dppm, 300 MHz CDCl₃, ¹³CNMR, COSY, CC and TLC on silica gel.

Extraction and Isolation

The roots of *Carallluma attenuata* were air dried, powdered and extracted with hexane, benzene, acetone and methanol respectively using soxhlet extractor.

n-Hexane extract 50gms was subjected to column chromatography using silica gel 10-40 mesh. It is eluted with mixtures of benzene, benzene and methanol. Benzene fractions (66-72) yielded a white solid which showed single spot on TLC with Rf - 0.3125 (benzene as developing solvent), The solid obtained was recrystallised using benzene and acetone mixture and melting point was determined. MP 268 $^{\circ}$ C. This was analysed by spectral data.

Spectral Data

 1 H NMR δ ppm 1.19, 1.8, 1.34, 1.21, 1.3, 1.24, 1.256, 1.94, 1.0, 1.35, 1.45, 5.62, 2.15, 3.45 13 C NMR δ ppm 18.368, 41.2, 79.2, 40.541, 36.617, 27.70, 29.057, 27.951, 40.765, 34.496, 38.519, 28.890, 21.097, 22.751, 122.045, 141.890, 77.5.

Results and Discussions

The compound was isolated as white crystalline needles with MP 268 ° C and analysed for $C_{29}H_{48}O_2$ [M⁺] m/z 427 [M-H], [M⁺] m/z 426 [M-2H]. The compound showed positive test for Libermann-Burchard reaction, Salkowski test indicating it to be a steroid/terpenoid.

The IR spectrum showed strong absorption at v_{max}^{KBr} 3263.15cm⁻¹ as a broad peak indicating the presence of –OH group. A strong absorption at v_{max}^{KBr} 1641.52 cm⁻¹ indicates the presence of olefinic double bond.

Table 1: The important IR absorption peaks of attendiol

S. No.	Absorption cm ⁻¹	Group Assignment	
1	3263.15	O-H stretching vibration, the peak is broad	
2	2955.78, 2847.55	C-H stretching in CH ₂	
3	1641.52	C = C stretching mode of unconjugated alkenes	

The ¹HNMR spectrum showed the characteristic ring protons ranging from δ 0.6-1.8 indicating the presence of pentacyclic triterpenoid ^[19].

A two proton triplet at δ 3.45 indicates the presence of 1° – OH which is supported by ¹³C NMR spectra. The ¹³C NMR signal at δ 77.5 indicates the presence of 1°-OH. This is observed in DEPT as CH₂ carbon. A two proton triplet at d 2.15 indicates presence of allylic proton supported by ¹³C NMR δ 34.49 which is also observed in DEPT as CH₂ carbon.

The cross peak in COSY indicates the existence of coupling between allylic protons and CH₂OH supporting that allylic carbon is directly attached to CH₂OH. A singlet signal at δ 1.35 accounting for 3 protons indicates –CH₃ attached to a tertiary carbon with electronegative group accounting for a tertiary hydroxy group at C-3 which is further supported by ¹³C NMR signal at δ 79.2 which is not seen in DEPT. ¹H NMR and ¹³C NMR spectral analysis

Carbon NO	1 H Nmr Data	13 C Nmr Data	Carbon NO	1 H Nmr Data	13 C Nmr Data
1	δ 1.19 δ 1.8	18.368	2	δ 1.19 δ 1.8	41.2
3		79.2	4	1.9	40.541
5	1.34	36.617	6	δ 1.21 δ 1.8	27.70
7	δ 1.21 δ 1.8	29.057	8	1.3	36.617
9	1.3	36.617	10	1.3	36.617
11	δ 1.19 δ 1.8	29.057	12	δ 1.19 δ 1.8	29.057
13	1.24	36.617	14	1.3	36.617
15	δ 1.21 δ 1.8	29.057	16	δ 1.21 δ 1.8	27.951
17	1.3	36.617	18	1.24	36.617
19	δ 1.19 δ 1.8	40.765	20		34.496
21	δ 1.256 δ 1.94	38.519	22	δ 1.256 δ 1.94	28.890
23	1.0	21.097	24	1.35	18.368
25	1.45	22.751	26	5.62	122.045
27		141.890	28	2.15	34.496
29	3.45	77.5			

Table 2: ¹H NMR and ¹³C NMR spectral analysis of attendiol

A two proton doublet at δ 5.62 indicates the presence of a disubstituted olefinic bond weak C-H absorption in IR at v_{max}^{KBr} 1397 cm⁻¹ indicates the presence of terminal double bonds which is supported by 13C NMR spectra. The 13C NMR signals at d 141.890 and d 122.05 indicates the presence of olefinic carbons. ¹³C NMR signal at δ 141.890 is not observed in DEPT clearly indicates that this olefinic carbon to be a quaternary carbon. The signal at δ 122 is seen in DEPT

as CH₂ carbon indicating a disubstituted terminal olefinic double bond >C=CH₂. ¹HNMR shows a doublet signal corresponding to 3H at δ 1.0 indicating the presence of methyl attached to methine [-CH-] carbon. It also shows a singlet at δ 1.35 indicates a methyl group attaches to a tertiary carbon. DEPT spectrum showed carbon resonances relating to -CH, -CH₂ and -CH₃ protons present in the compound which are in agreement with ¹³C NMR resonances.

Table 3: DEPT analysis of attendiol

Carbon No	-CH	-CH ₂	-CH3	13 C
1		18.368		18.368
2		41.2		41.2
3				79.2
4	40.541			40.541
5	36.617			36.617
6		27.70		27.70
7		29.057		29.057
8	36.617			36.617
9	36.617			36.617
10	36.617			36.617
11		29.057		29.057
12		29.057		29.057

13	36.617			36.617
14	36.617			36.617
15		29.057		29.057
16		27.951		27.951
17	36.671			36.617
18	36.617			36.617
19		40.765		40.765
20				34.496
21		38.519		38.519
22		28.890		28.890
23			21.097	21.097
24			18.368	18.368
25			22.751	22.751
26		122.045		122.045
27				141.890
28		34.496		34.496
29		77.5		77.5

Thus, based on IR, NMR (¹ HNMR and ¹³ C) partial structure of the compound *attendiol* can be given as,

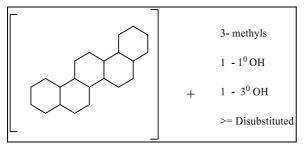


Fig 1: partial structure of the compound attendiol

Based on the triterpenoids isolated from the same plant the position of tertiary -OH in *attendiol* can be given as

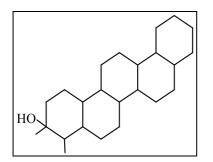


Fig 2: partial structure of *attendiol* with tertiary –OH group

Based on ¹³C NMR, DEPT and COSY supported by mass spectral fragmentation the structure of the compound *attendiol* can be given as,

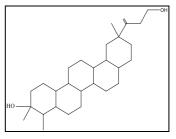
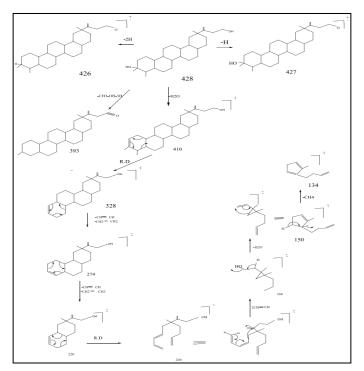



Fig 3: Structure of *attendiol*

This structure is further supported by the mass spectral fragmentation as given in scheme-I which explains most of the mass spectral peaks. This terpenoid is isolated and reported for the first time from this plant as well as from nature.

Table 4: The mass spectral data of attendiol

S. No.	m/z	Ion formed
1	427	[M – H]
2	426	[M-2H]
3	393	[M – CH ₃ -OH-3H]
4	274	$[M-H_2O-C_6H_{10}-C_2H_2-C_2H_4]$
5	150	$[M-H_2O-C_6H_{10}-C_2H_2-C_2H_4-C_4H_6-C_4H_4-H_2O]$
6	134	$[M-H_2O-C_6H_{10}-C_2H_2-C_2H_4-C_4H_6-C_4H_4-H_2O-CH_4]$

Scheme 1: MASS spectral fragmentation of compound

Acknowledgement

I extend my sincere thanks to my research guide, Chairman and Principal of Vignan Degree and P.G. College, for providing facilities to carry out my research work. I am also thankful to all my collegues and family members for their support.

References

- Abdel-Sattar E, Al-Yahya MMA, Nakamur N, Hattori M. Penicillosides A-C oxypregnane glycosides from *Caralluma penicillata*. Phytochemistry. 2001; 57:1213-1217.
- 2. Abdel-Sattar E, Meselhy RM, Al-Yahya MAA. New oxypregnane glycosides from *Caralluma penicillata*. Planta Med. 2002; 68:430-434.
- Ahmad VU, Khan U, Rizwani GH. New pregnane glycosides from *Caralluma russeliana*. J Nat. Prod. 1988; 51(6):1092-1097.
- Al-Yalhya MAA, Abdel- Sattar E, Guittet E. Pregnane glycosides from *Caralluma russeliana* J Nat. Pro. 2000; 63:1451-1453.
- Braca A, Badar A, Morelli I, Scarpato R, Turchi G, Pizza C, Tammasi D *et al.* New pregnane glycosides from *Caralluma negevensis.* Tetrahedron. 2002; 58:5837-5842.
- 6. Halim AF, Khalil AT. Pregnane glycosides from *Caralluma retrospiciens*. Phytochemistry. 1996; 42(4):1135-1139.
- Hayash K, Lida L, Nakao Y, Kaneko K. Four pregnane glycosides *Boucerosides* AI AII, BI and BII from *Boucerosia aucheriana*. Phytochemistry. 1998; 27(12):3919-3924.
- Lin LJ, Lin GLLR, Cordell LGA, Ramesh M, Srilatha B, Reddy BM, Appa Rao AVN *et al.* Pregnane glycosides from *Caralluma umbellate*. Phytochemistry. 1994; 35(6):1549-1553.
- Tanaka T, Tsukamoto S, Hayashi K. Pregnane glycosides from *Boucerosia aucheriana*. Phytochemistry. 1990; 29(1):229-237.

- Jen-Woo Jhoo, Kantle Shengmin Sang, Xiaofong Cheng, Nargurzhu Ruth, Stark E, Qun Yizheng *et al.* J Agri. Food Chem. 2001; 40:5969-5974.
- 11. Kamil M, Jayaraj AF, Ahmad F, Gunasekhar C, Samuel S, Chan K *et al.* Identification and quantification of flavanoids from *Caralluma Arabica* and their quality control studies. J Pharm. Pharmacol. 1999; 51:225.
- 12. Khalil AT. *Fitoterapia*. Pregnane esters from *Caralluma retrospiciens*. 1995; 66(3):261-264.
- Qiu SX, Lin L, Cordell GA, Ramesh M, Ravi kumar B, Radhakrishna M, Krishnamohan G *et al.* Acylated C-21 steroidal from *Caralluma lasiantha*. Phytochemistry. 1997;46(2):333-340.
- Qiu SX, Cordell, Ramesh M, Ravikuma B, Radhkrishna M, Mohan GK *et al.* Bisdesmosidic pregnane glycosides from *Caralluma lasiantha*. Phytochemistry. 1999; 50:485-491.
- Ramesh M, Nageswara Rao Y, Ramakumar Kumar M, Krishna Mohan G, Ravikumar B, Madhakumar AVN *et al*. Flavone glycosides from three *Caralluma lasiantha*. Biochemical systematics and Ecology. 1999; 27:85-86.
- Jayalakshmi G, Anuradha V, Kalyani K, Sivaram Babu S. A Novel pentacyclic triterpenoid isolated from *Caralluma attenuata* root. European journal of pharmaceutical and medical research. 2016; 3(6):342-344.
- 17. Jayalakshmi G, Kavitha K, Ratnakumari S, Anuradha V, Sivaram Babu S. A Novel pentacyclic triterpenoid isolated from *Caralluma attenuata* root. European journal of pharmaceutical and medical research. 2017; 4(6):710-712.
- Jayalakshmi G, Anuradha V, Ratna Kumari S, Sivaram babu S, Rabbani Basha SK. Structural elucidation of a New Novel pentacyclic triterpenoid from *Caralluma attenuata* Root. Derpharma chemical. 2019; 11(3):13-18.
- 19. Jin-Woo Jhoo, Kan He Shengmin Sang, Xiafang Chennm, Nanqun Zhu, Ruth E, Stark *et al.* Characterisation of the terpene saponins of the Roots and Rhizomes of Blue Cohosh (*Caulphyllum thalictroides*) J Agri. Food Chem. 2001; 49:12.