

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(4): 1047-1049 Received: 16-05-2019 Accepted: 18-06-2019

A Balasubramanian

Assistant Professor, Department of Agronomy, Faculty of Agriculture, Annamalai University, Annamalainagar, Tamil Nadu, India

Effect of integrated nutrient management practices on growth, yield and nutrient uptake of rice (*Oryza sativa* L.)

A Balasubramanian

Abstract

Field investigations were carried out at the Experimental farm, Department of Agronomy, Annamalai University, Annamalainagar, which represents the tail end area of Cauvery Deltaic Zone of Tamil Nadu, India, to study the Effect of Integrated nutrient management practices on growth, yield and nutrient uptake of rice. The experiments were laid out in randomized block design with three replications. Integrated application of 75% recommended dose of N through fertilizer and 25% N through various organic manures (FYM, cow dung based vermicompost, cow dung and water hyacinth based vermicompost, enriched poultry manure compost, enriched coirpith compost, green manures and green leaf manures) with recommended dose of P and K were evaluated with farmers' practice and absolute control. Among the different combinations, application of 75% RDN through fertilizer + 25% N through vermicompost (75% Cd + 25% Wh) had strikingly impressive effect on growth, yield attributes, grain and straw yield of rice and nutrient uptake. This treatment was statistically on par with the application of 75% RDN through fertilizer + 25% N through vermicompost (100% Cd). Vermicompost prepared from cow dung as well as cow dung and water hyacinth were on par with each other in recording higher values. The integration of organic and inorganic forms of N excelled over the absolute control treatment.

Keywords: INM, FYM, green manure, green leaf manure, vermicompost

Introduction

Rice is the most important staple food for more than half of the world's population, including regions with high population density and rapid growth. Among the rice growing countries, India has the largest area (44 million hectares) and it is the second largest producer (131 million tonnes) of rice next to China (197 million tonnes). The rice productivity in India is 3.37 t ha⁻¹ while the world average is 4.25 t ha⁻¹ (IRRI, 2011) ^[6]. At the current population growth rate (1.5%), the rice requirement of India by the year 2025 would be around 125 million tonnes (Kumar et al., 2009)^[7]. To meet the food requirement of the growing population, India has to increase its rice productivity by three per cent per annum (Gulab Singh Yadav et al., 2009^[3]. In Tamil Nadu, it is cultivated in an area of 17.89 lakh hectares with the production and productivity of 50.40 lakh tonnes and 2.82 t ha⁻¹, respectively (Anonymous, 2010) ^[1]. Rice often surprises us with phenomenal adjustments to its environment perhaps that is the reason why it has become one of the world's prime food crops. Highly intensified chemical agriculture with repeated application of fertilizers, insecticides, fungicides and herbicides has resulted in environmental pollution, soil degradation, depletion of fertility and decline in productivity. Though synthetic fertilizers have contributed more for enhancing agricultural production, their extensive use for longer period have contributed equally or more negatively in erosion of soil fertility and decline in productivity level (IRCN, 2001)^[4], environmental pollution with adverse effects on human health, biotic and ecosystem (IRRI, 2003)^[5].

Among the nutrient inputs, nitrogen ranks first to maximize output in agriculture (Sharma, 1995)^[10]. Nitrogen is the key to any fertilizer management programme and it is the mean by which yield potential of modern rice genotypes can be achieved. Recent response studies indicated the use of more than 150 kg nitrogen ha⁻¹ than to the older ones of around 120 - 150 kg nitrogen ha⁻¹. The low N recovery, increased pollution and enhanced cost of production resulted in renewed interest in organic manuring to partially substitute the fertilizer N and to achieve sustainable productivity.

Research evidences proved beyond doubt that the complementary use of organic and inorganic sources of plant nutrients can sustain the optimum crop yields and improve the soil health. Farm yard manure (FYM) is the most commonly used organic manure.

Correspondence A Balasubramanian Assistant Professor, Department of Agronomy, Faculty of Agriculture, Annamalai University, Annamalainagar, Tamil Nadu, India It supplies macro and micronutrients apart from improving physical conditions of the soil (Sengar et al., 2000)^[9]. In the recent years, vermicompost has been identified as one of the major gears to convert the biodegradable organic material into resourceful manure. It is rich in available nitrogen, potassium, calcium, phosphorus, vitamins, natural phytoregulators and microflora in balanced form that help in re-establishment of the natural fertility of the soil (Banik and Ranjita Bejbaruah, 2004)^[2]. Water hyacinth, an aquatic and most problematic weed can be effectively utilized for the production of vermicompost (Sudhakar, 2000) ^[11] when mixed with cow dung upto 25 per cent on dry weight basis (Renuka et al., 2007)^[8].

Poultry manure contains considerable amount of plant nutrients which has to be used as manure after composting. Enrichment of poultry wastes with phosphatic fertilizers and biofertilizers can increase its nutrient content and availability. Use of green manures, a rich source of nitrogen helps to keep soil quality and fertility enhancement as a whole meeting a part of nutrient need of crops. The pre-season green manuring and its in-situ incorporation had improved growth and productivity of succeeding cereals, particularly rice. Therefore, the present investigation was planned to develop a remunerative, productive and sustainable integrated nutrient management for rice crop.

Materials and Methods

Field experiments were conducted at the Experimental Farm, Department of Agronomy, Annamalai University, Annamalainagar to ascertain the effect of integrated nutrient management practices on growth, yield and nutrient uptake of rice. The experimental site is situated at $11^{\circ}24'$ N latitude and $79^{\circ}44'$ E longitude with an altitude of +5.79 m above mean sea level in the southern part of India and 15 km away from the Bay of Bengal coast. The weather at Annamalainagar is moderately warm with hot summer months. The initial analysis of the experimental soil revealed that heavy clay with neutral in reaction, with low soluble, low in available N, medium in available P₂O₅ and high in available K₂O.

The experiments were laid out in randomized block design with three replications. The treatment schedule comprised of T₁ - Control (No manures and fertilizer application), T₂ – 100% Recommended dose of fertilizer N (RDN), T₃ - 100% RDN + FYM @ 12.5 t ha⁻¹, T₄ - 75% RDN + 25% N through vermicompost (100% cow dung – Cd), T₅ – 75% RDN + 25% N through vermicompost (75% cow dung - Cd + 25% water hyacinth - Wh), T₆ - 75% RDN + 25% N through enriched poultry manure compost, T₇ - 75% RDN + 25% N through enriched coirpith compost, T₈ - 75% RDN + 25% N through *Sesbania aculeata*, T₉ - 75% RDN + 25% N through *Crotalaria juncea*, T₁₀ - 75% RDN + 25% N through *Gliricidia sepium*, T₁₁ - 75% RDN + 25% N through *Pongamia glabra*.

The organic manures *viz.*, FYM, vermicompost, enriched poultry manure compost, enriched coirpith compost, green manures and green leaf manures and inorganic fertilizers *viz.*, urea, super phosphate and muriate of potash were used in the experiments. Green manure *in situ* with *Sesbania aculeata* and *Crotalaria juncea* as well as green leaf manures *Gliricidia sepium* and *Pongamia glabra* were incorporated one week before transplanting of rice in the respective treatments. Recommended agronomic management practices were followed as per the guidelines given by the Department of Agriculture, Government of Tamil Nadu. The growth attributes *viz.*, plant height, number of tillers hill⁻¹, dry matter

production (DMP), and yield attributes *viz.*, number of productive tillers hill⁻¹, grain yield and straw yield were recorded. NPK nutrients uptake by the crop were also recorded.

Result and Discussion

Integrated nutrient management practices exerted marked influence on the plant height of rice. Among the treatments, application of 75% RDN through fertilizer + 25% N through vermicompost (75% cow dung – Cd + 25% water hyacinth -Wh) (T₅) recorded taller plants with the value of 108.7 cm during harvesting stage. This was statistically on par with application of 75% RDN + 25% N through vermicompost (100% cow dung – Cd) (T₄). This was followed by application of 75% RDN through fertilizer + 25% N through enriched poultry manure compost (T₆). The absolute control (T₁) registered shorter plants of 68.9 cm during harvesting stage.

Significant variation in number of tillers m⁻² and dry matter production were existed due to the integrated nutrient management practices. Among the treatments, application of 75% RDN through fertilizer + 25% N through vermicompost (75% cow dung – Cd + 25% water hyacinth – Wh) (T₅) recorded more number of tillers (444 m⁻²) and higher DMP value of 12828 kg ha⁻¹ during harvesting stage. However, it was found to be on par with the application of 75% RDN through fertilizer + 25% N through vermicompost (100% Cd) (T₄). This was followed by the application of 75% RDN through fertilizer + 25% N through enriched poultry manure compost (T₆) at all the stages of crop growth. The treatment absolute control (T₁) produced minimum number of tillers m⁻² (218), lower DMP (12828 kg ha⁻¹) during harvesting stage of the crop.

A significant difference in productive tillers m⁻² was recorded at harvest stage as a result of integrated nutrient management practices. Higher panicle number of 324 was registered under the application of 75% RDN through fertilizer + 25% N through vermicompost (75% Cd + 25% Wh) (T₅). It was statistically on par with the application of 75% RDN through fertilizer + 25% N through vermicompost (100% Cd) (T₄). This was followed by application of 75% RDN through fertilizer + 25% N through enriched poultry manure compost (T₆). Absolute control (T₁) recorded the lower number of productive tillers m⁻² of 186.

Among the treatments, application of 75% RDN through fertilizer + 25% N through vermicompost (75% Cd + 25% Wh) (T₅) recorded higher grain yield of 6154 kg ha⁻¹ and it was found to be on par with the application of 75% RDN through fertilizer + 25% N through vermicompost (100% Cd) (T₄) by registering a grain yield of 5890 kg ha⁻¹. Application of 75% RDN through fertilizer + 25% N through enriched poultry manure compost (T₆) was the next best treatment. The same trend was followed in straw yield also.

Higher NPK uptake by rice was observed under the application of 75% RDN through fertilizer + 25% N through vermicompost (75% Cd + 25% Wh) (T₅) with higher uptake of N (108.25 kg ha⁻¹), P (25.12 kg ha⁻¹) and K (138.42 kg ha⁻¹). However, it was statistically on par with the application 75% RDN through fertilizer + 25% N through vermicompost (100% Cd) (T₄). Application of 75% RDN through fertilizer + 25% N through enriched poultry manure compost (T₆) was next in order. Absolute control (T₁) recorded lower N uptake of 53.06 kg ha⁻¹, P uptake of 11.67 kg ha⁻¹ and K uptake of 64.19 kg ha⁻¹.

 Table 1: Effect of integrated nutrient management on plant height (cm), number of tillers hill-1, dry matter production at harvest stage and number of productive tillers hill-1 of rice crop

Treatments	Plant height (cm)	Number of tillers hill ⁻¹	Dry matter production (kg ha ⁻¹)	Number of productive tillers hill ⁻¹	
T ₁ – Absolute control (No manures and fertilizer application)	68.9	218	5835	189	
T ₂ -100% Recommended dose of fertilizer N (RDN)	78.8	268	8182	231	
T ₃ -100% RDN + FYM @ 12.5 t ha ⁻¹	91.6	343	9998	270	
T ₄ - 75% RDN + 25% N through VC (100% Cd)	105.3	421	12210	318	
T ₅ - 75% RDN + 25% N through VC (75% Cd + 25% Wh)	108.7	444	12584	327	
$T_6 - 75\%$ RDN + 25% N through EPMC	99.9	392	11382	299	
T ₇ – 75% RDN + 25% N through ECC	94.4	361	10393	280	
T ₈ – 75% RDN + 25% N through Sesbania aculeata	94.0	354	10337	278	
T ₉ – 75% RDN + 25% N through Crotalaria juncea	92.3	346	10144	275	
$T_{10} - 75\%$ RDN + 25% N through <i>Gliricidia sepium</i>	84.2	299	8843	245	
$T_{11} - 75\%$ RDN + 25% N through <i>Pongamia glabra</i>	86.5	311	9105	250	
S.Ed	2.36	12.5	278.60	8.35	
CD (P = 0.05)	4.89	27.5	565.80	17.64	

*AT - Active tillering; PI – panicle initiation; F – flowering; H – harvesting stage

**VC - Vermicompost; Cd - Cow dung; Wh - Water hyacinth; EPMC - Enriched poultry manure compost; ECC - Enriched coirpith compost

Table 2: Effect of integrated nutrient management on grain yield, straw yield and NPK nutrient uptake of rice crop

Treatments	Grain yield	Straw yield	Nutrient uptake (kg ha ⁻¹)		
i reatments	(kg ha ⁻¹)	(kg ha ⁻¹)	Ν	Р	K
T ₁ – Absolute control (No manures and fertilizer application)	2180	3905	53.06	11.67	64.19
T ₂ -100% Recommended dose of fertilizer N (RDN)	3497	4935	73.65	16.36	90.00
$T_3 - 100\%$ RDN + FYM @ 12.5 t ha ⁻¹	4593	5655	89.98	20.04	109.98
T ₄ – 75% RDN + 25% N through VC (100% Cd)	5890	6570	106.82	24.42	134.31
T ₅ – 75% RDN + 25% N through VC (75% Cd + 25% Wh)	6154	6680	108.25	25.12	138.42
$T_6 - 75\%$ RDN + 25% N through EPMC	5414	6220	100.44	22.76	125.20
$T_7 - 75\%$ RDN + 25% N through ECC	4883	5805	93.54	20.78	114.32
T ₈ – 75% RDN + 25% N through Sesbania aculeata	4792	5795	93.03	20.67	113.71
T ₉ – 75% RDN + 25% N through Crotalaria juncea	4670	5724	91.25	20.29	111.58
$T_{10} - 75\%$ RDN + 25% N through <i>Gliricidia sepium</i>	3908	5185	79.59	17.69	97.27
T ₁₁ – 75% RDN + 25% N through Pongamia glabra	4105	5250	81.95	18.21	100.16
S.Ed	135.6	167.7	2.32	0.56	3.37
CD (P = 0.05)	274.8	342.2	4.84	1.12	6.78

*AT - Active tillering; PI - panicle initiation; F - flowering; H - harvesting stage

**VC - Vermicompost; Cd - Cow dung; Wh - Water hyacinth; EPMC - Enriched poultry manure compost; ECC - Enriched coirpith compost

Conclusion

From the results of the field experiments, it can be concluded that integrated nutrient management practice with 75% RDN through fertilizer + 25% N through vermicompost (75% Cd + 25% Wh) applied to rice was found to be an agronomically sound, ecologically safe and economically viable practice for augmenting higher productivity for the tail end area of Cauvery Deltaic Zone of Tamil Nadu.

References

- 1. Anonymous. Tamil Nadu at a glance. Statistical Hand Book. Dept. Economics and Statistics, Tamil Nadu, Chennai, India, 2010.
- 2. Banik P, Ranjita Bejbaruah. Effect of vermicompost on rice yield and soil fertility status of rainfed humid sub-tropics. Indian J Agric. sci. 2004; 74(9):488-491.
- 3. Gulab Singh Yadav, Dineshkumar YS, Shivay, Harmandeep Singh. Zinc-Enriched urea improves grain yield and quality of aromatic rice. Better Crops. 2009; 3(1):4-5.
- 4. IRCN. Expert consultation on yield gap and productivity decline in rice production. Conclusion and recommendations. Intl. Rice Com. Newsletter. 2001; 50:73-83.
- 5. IRRI. IRRI's environmental agenda. Unpublished draft document, 2003.

- 6. IRRI. Trends in the rice economy, 2011. In: http:// beta.irri.org/solutions/index.php.
- Kumar RM, Surekha K, Padmavathi CH, Rao LVS, Latha PC, Prasad MS, *et al.* Research experiences on System of Rice Intensification and future directions. J Rice Res. 2009; 2(2):61-73.
- Renuka G, Praveen Kumar M, Naresh Kumar R, Mahender Singh S, Garg VK. Development of a water hyacinth based vermireactor using an epigeic earthworm *Eisenia foetida*. Bioresour. Tech. 2007; 98(13):2605-2610.
- Sengar SS, Wade LJ, Beghel SS, Singh RK, Singh G. Effect of nutrient management on rice (*Oryza sativa*) in rainfed low land of south east Madhya Pradesh. Indian J Agron. 2000; 45(2):315-322.
- 10. Sharma AR. Fertilizer use in rice and rice-based cropping system. Fert. News. 1995; 40(5):29-41.
- 11. Sudhakar G. Studies on to identify crop wastes / Low land weeds as alternate source to organics to sustain the productivity of rice based system. Ph.D. Thesis, Tamil Nadu Agric. Univ., Coimbatore, Tamil Nadu, India, 2000.