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Effect of water deficit on physiological and 

biochemical responses in cocoa (Theobroma cacao 

L.) clones 
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Abstract 

The present pot culture study on the effect of water stress on physiological and biochemical 

characteristics of twenty cocoa genotypes was taken up with two irrigation regimes (100% FC and 50% 

FC) under glasshouse condition. The results revealed that irrigation at 50 % field capacity showed an 

inhibitory effect on overall growth characteristics of all genotypes and the changes in leaf epicuticular 

wax, chlorophyll content and NRase, phenol, and proline accumulations. Based on the biochemical 

changes observed between the genotypes in two irrigation regimes revealed that VTLCH 3 and VTLCH 

4 were grouped as tolerant genotypes. 
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Introduction 

Cocoa (Theobroma cacao L.) is an important plantation in the current horticulture scenario 
and it is grown in tropical regions of the world to produce beans which are used for the 
manufacture of chocolate and other confectioneries. Cocoa is an introduced crop in India 
during 1798 (Ratnam, 1961) [29], and it is cultivated as a rainfed mixed crop in palm based 
cropping systems in traditional areas of Kerala and Karnataka (Balasimha, 1987)  [5]. Cocoa is 
widely cultivated as an irrigated intercrop under coconut and oil palm in non- traditional areas 
of Tamil Nadu and Andhra Pradesh. Several environmental factors control the growth of 
cocoa. Flowering, flushing and expansion of the leaves were influenced by the temperature 
(Sale, 1968 and 1969) [32, 33] humidity and soil moisture (Sale, 1970) [34]. The cocoa tree needs a 
high, well-distributed rain, possibly with a short dry period to stimulate flowering. In recent 
decades, cocoa productivity is very low due to high climate variability such as higher 
temperatures, decrease in rainfall and shorter rainy seasons (Brou, 2005) [9]. Cocoa is intolerant 
to drought (Mohdrazi et al., 1992; Wood and Loss, 2001) [23, 36] and this situation warrants the 
identification of cocoa varieties/clones for drought tolerance along with high yield. Cultivation 
of drought tolerant genotypes is one of the most sustainable ways to reduce the impacts of 
marginal rainfall and prolonged dry periods on cocoa production and productivity. 
Physiological response to drought stress is characterized by a reduction in water content, 
diminished leaf water potential, loss of turgor, closure of stomata and cessation of cell 
enlargement and growth. Farooq et al (2009) [12] reported that drought stress inhibits the 
growth of the plant and causes oxidative and cellular damage. Various morphological 
adaptations for drought tolerance include reduction of leaf area, leaf rolling, presence of 
hairiness, epicuticular wax deposition, vigorous root system etc. Deposition of epicuticular 
wax on the leaf has often been suggested as valid criteria for the selection of drought tolerant 
genotypes. In cocoa, water stress damages the photosynthetic apparatus, thereby influencing 
chlorophyll content and photosynthesis. Therefore chlorophyll content and chlorophyll 
stability index were used to detect drought tolerance (Ravindran and Menon, 1982) [30]. The 
accumulation of compatible osmolytes such as proline, which acts as enzyme protectant and 
free radical scavenger, is considered an important parameter for selection of crop varieties for 
drought tolerance (Sharma and Aravind Kumar, 1991) [35]. Faghani Elham et al. (2012) [11] 

suggested that the deposition of epicuticular wax on the leaf has often used as valid criteria for 
the selection of drought tolerant genotypes. Phenolic compounds such as phenolic acid, 
anthocyanin, and flavonoids reduce ROS and prevent cell damage (Hatier and Gould, 2008) 
[16]. The activity of nitrate reductase is associated with a metabolic and physiological status of 
plants and can be used as a biomarker of plant stress including drought. Therefore, the aim of 
the present study was to identify drought tolerant genotypes on the basis of physiological and 
Biochemical factors and to evaluate the existence of genotypic variability at the initial growth 
phase. 
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Materials and Methods 

Vegetative multiplied five months old cocoa clones (10 high 

yielding plus trees TNAUCC 1 to TNAUCC 10 besides the 7 

KAU clones CCRP 1 to CCRP 5 and 5 Vittal clones 

VTLCC1, VTLCH-1 to VTLCH-4) were planted in pots 

under the protected condition at Tamil Nadu Agricultural 

University, Coimbatore. The treatments were imposed with 

two irrigation levels 100 % field capacity and 50 % field 

capacity (gravimetric method), when the first flush started 

growing at 15 days after transplanting. The experiment was 

laid out in a completely factorial randomized block design 

with four replications. All the analyses were performed 30 

days after stress imposition. Chlorophyll content in the leaf 

was determined using a chlorophyll meter (SPAD 502) and 

the data were recorded as described by Peng et al. (1996) [28]. 

The chlorophyll stability index (CSI) was determined using 

the Koloyereas method (1958) [19]. The wax content was 

determined by a modification of the colorimetric method 

described by Ebercon et al. (1977) [10]. The nitrate reductase 

activity in the leaves was determined according to the method 

of Nicholas et al. (1976) [26]. Estimation of total phenols 

content by the method of Folin ciocalteau reagent described 

by Bray and Thrope, 1954 [8]. The proline content in the 

leaves was estimated by the method of Bates et al. (1973) [6]. 

The collected data were subjected to statistical analysis of 

their significance (Panse and Sukthme, 1961) [27]. 

 

Results and Discussion 

Performance of twenty cocoa genotypes for physiological and 

biochemical parameters under 50% and 100% Field capacity 

are presented in Table 1 and 2. High significant differences 

were recorded for all the parameters among the genotypes, 

water regimes and their interactions except for chlorophyll 

index which recorded non-significant differences among the 

genotype and irrigation regime interaction. ures 1, 2, 3 and 4 

illustrate the relationships between the various physiological 

and biochemical parameters under stress and optimal 

conditions. Under optimum conditions, five clones VTLCH 4, 

VTLCH 3, CCRP 1, CCRP 2 and VTLCC 1 recorded a higher 

rate of chlorophyll index (40.74, 39.56, 38.05, 36.86 and 

36.32) and remained on par with each other. When subjected 

to 50% field capacity chlorophyll index significantly 

decreased (32.42) as compared to 100 % field capacity 

(37.36). Reduction in SPAD values under drought shows that 

the drought stress blemishes the chlorophyll content through 

an internal modification in the thylakoid membrane. Similar 

to this finding, Ghaffari et al. (2012) [13] stated that the tolerant 

sunflower line had a higher SPAD value than the susceptible 

line in drought condition. Among the 20 different clones 

screened for drought tolerance, the higher chlorophyll index 

was found in VTLCH 4 and VTLCH 3 under stress condition. 

Due to imposed drought stress a reduction in chlorophyll 

stability index from 81.82 to 70.35 was observed. The 

genotypes, VTLCH 4 and VTLCH 3 showed more than 80 

percent of the chlorophyll stability index and TNAUCC 2 and 

CCRP 5 recorded the lowest percentage of chlorophyll 

stability indices (73.13 and 73.07). Under water stress 

condition, VTLCH 4 and VTLCH 3 relatively experienced the 

highest chlorophyll stability index (79.80 and 78.67) 

indicating their drought tolerant nature. The chlorophyll 

stability index is considered as an important physiological 

factor to screen drought tolerance (Murthy and Majumder, 

1962) [24].  

Cocoa genotypes responded differentially under water deficit 

conditions for biochemical parameters. Estimation of NRase 

activity in the present investigation revealed that NRase 

activity was significantly reduced under stress condition. 

Genotypes, VTLCH 4 showed higher enzyme activity (10.91 

μmol NO2 g-1 h-1) followed by VTLCH 3 (10.77 μmol NO2 g-1 

h-1) while the least nitrate reductase activity was observed in 

TNAUCC 2 (8.26 μmol NO2 g-1 h-1) followed by TNAUCC 7 

(8.46 μmol NO2 g-1 h-1) and VTLCH 1 (8.59 μmol NO2 g-1 h-1) 

which were on par with each other. Among treatments, the 

plants imposed with 50 % field capacity registered lower 

enzyme activity (6.11) than 100 per cent field capacity 

(13.08). Under drought condition, VTLCH 3, VTLCH 4, 

VTLCH 2 and VTLCC 1 recorded a significantly higher 

nitrate reductase activity (7.23, 7.19, 6.63 and 6.63 μmol NO2 

g-1 h-1 respectively). The reduction of NRsae values under 

drought is associated with a high proline accumulation in 

drought tolerant genotypes (Matt and Pauli, 1965) [22]. 

Differential performance of genotypes for enzyme activity 

could be realized under water deficit condition. Among the 20 

different clones screened for drought tolerance, it was found 

that NRase is higher with VTLCH 3 and VTLCH 4 under 

stress condition. Genotypic differences in nitrate reductase 

activity also reported in several other crops (Sinha et al., 

1974; Reed and Hageman, 1980) [37, 31]. 

The phenol content varied significantly between genotypes, 

water regimes and genotype water regime interactions. 

Genotypes, VTLCH 4 showed significantly higher phenol 

content (2.81mg g-1) followed by VTLCC 1 (2.68mg g-1) and 

VTLCH 3 (2.68mg g-1) compared to the other genotypes. 

TNAUCC 5 (1.98mg g-1) followed by TNAUCC 10 (2.06mg 

g-1), TNAUCC 2 (2.07mg g-1) and CCRP 5 (2.08mg g-1) 

registered the least phenol content. With respect to water 

regimes, the stress condition enhanced significantly higher 

phenol content (2.94mg g-1) than 100 per cent field capacity 

(1.58mg g-1). Under 50% FC, VTLCH 4 showed its 

supremacy by recording higher phenol content (3.87mg g-1) 

followed by VTLCH 3 (3.75mg g-1) and VTLCC1 (3.5mg g-

1). The Accumulation of phenol content in water stress is a 

mechanism of drought adaptation (Hernández et al., 2000; 

Koskeroglu and Tuna, 2008; Venkatesan and Sridevi, 2009) 

[17, 20, 38].  

The highest proline content was observed in VTLCH 4 

(514.63μg g-1) and VTLCH 3 (510.61μg g-1) while the lowest 

value was observed in TNAUCC 2 (441.24μg g-1). Under 

water stress condition, proline content substantially increased 

to 703.78 versus 247. 31 under 100 % field capacity. At 100 

percent field capacity, CCRP 2 and VTLCH 2 recorded the 

highest proline content (259.61 and 259.60μg g-1) compared 

to all the genotypes. Performance of the genotypes under 

drought indicated that VTLCH 4 and VTLCH 3 were 

significantly superior as expressed higher proline 

accumulation of 781.39μg g-1and 776.46μg g-1 respectively 

than any other genotypes. Proline accumulation during water 

stress is a drought adaptive mechanism (Kramer, 1983) [21]. 

An increase in the proline content by water stress has been 

suggested as evidence of resistance to water stress (Gupta and 

Gupta, 1997) [14]. Similar results were obtained in cocoa 

Balasimha (1982) [3], pepper (Nath et al., 2005) [25], coconut 

(Kasturi Bai and Rajagopal, 2000) [18], wheat (Hamada, 2000) 

[15] and sorghum (Yadav et al., 2005) [40]. Abdellah et al. 

(2011) [1] reported that the increased proline content was in 

observed tolerant wheat cultivar by water stress (30 per cent 

FC) over control.  

Epicuticular wax plays an important role in plant’s ability to 

withstand water deficits and is known to increase due to stress 

(Baker, 1974; Bengston et al., 1978) [2, 7]. A higher 
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epicuticular wax content was associated with drought tolerant 

accessions of cocoa (Balasimha, 1984) [4]. The drought 

tolerant clones i.e. VTLCH 4, VTLCH 3 had a higher wax 

content (0.37µg/cm2 and 0.34µg/cm2) TNAUCC 5 clone 

sensitive to drought (0.21µg/cm2), which confirms that a 

higher wax content is associated with drought tolerance. 

Shepherd and Wynne Griffiths (2006) [36] reported that 

increased cuticular wax content minimize the adverse effects 

of drought stress by reducing leaf transpiration and 

maintained stomatal conductance.  

 
Table 1: Effect of irrigation regime on chlorophyll index (SPAD value) and Chlorophyll Stability Index (%) of cocoa genotypes 

 

Genotypes (G) 

Chlorophyll index (SPAD value) Chlorophyll Stability Index (%) 

Irrigation Regime (I) 
Mean Percentage over Control 

Irrigation Regime (I) 
Mean 

100 %FC 50 %FC 100%FC 50 %FC 

TNAUCC 1 37.69 33.09 35.39 12.20 88.42 (70.12) 70.62 (57.17) 79.52 (63.65) 

TNAUCC 2 36.52 29.90 33.21 18.13 79.58 (63.14) 66.67 (54.75) 73.13 (58.94) 

TNAUCC 3 35.72 30.20 32.96 15.45 87.34 (69.19) 68.69 (55.98) 78.02 (62.59) 

TNAUCC 4 38.20 33.03 35.62 13.53 82.34 (65.22) 66.68 (54.80) 74.51 (60.01) 

TNAUCC 5 36.41 31.21 33.81 14.28 81.47 (64.51) 65.47 (54.01) 73.47 (59.26) 

TNAUCC 6 35.35 28.80 32.08 18.53 78.74 (62.54) 69.94 (56.75) 74.34 (59.64) 

TNAUCC 7 37.51 31.51 34.51 16.00 78.67 (62.50) 68.10 (55.61) 73.39 (59.05) 

TNAUCC 8 34.69 29.59 32.14 14.70 79.56 (63.12) 68.13 (55.63) 73.85 (59.37) 

TNAUCC 9 33.81 28.59 31.20 15.44 80.42 (63.74) 67.68 (55.35) 74.05 (59.55) 

TNAUCC 10 37.31 31.33 34.32 16.03 76.01 (60.68) 69.29 (56.35) 72.65 (58.51) 

CCRP 1 40.31 35.78 38.05 11.24 83.85 (66.43) 74.04 (59.40) 78.95 (62.92) 

CCRP 2 38.91 34.81 36.86 10.54 80.45 (63.76) 72.65 (58.47) 76.55 (61.12) 

CCRP 3 38.77 32.63 35.70 15.84 82.22 (65.06) 69.41 (56.42) 75.82 (60.74) 

CCRP 4 36.11 31.61 33.86 12.46 79.67 (63.20) 70.27 (56.96) 74.97 (60.08) 

CCRP 5 36.79 31.49 34.14 14.41 78.43 (62.32) 67.70 (55.37) 73.07 (58.84) 

VTLCC 1 38.33 34.31 36.32 10.49 80.92 (64.10) 72.69 (58.49) 76.81 (61.29) 

VTLCH 1 34.52 30.23 32.38 12.43 79.50 (63.09) 69.68 (56.59) 74.69 (59.84) 

VTLCH 2 37.47 32.40 34.94 13.53 82.47 (65.32) 70.85 (57.34) 76.66 (61.33) 

VTLCH 3 40.91 38.21 39.56 6.60 87.67 (69.46) 78.67 (62.49) 83.17 (65.98) 

VTLCH 4 41.79 39.68 40.74 5.05 88.76 (70.41) 79.80 (63.28) 84.28 (66.85) 

Mean 37.36 32.42 34.89 

 

81.82 (64.89) 70.35 (57.06) 76.09 (60.98) 

 G I G X I G I G X I 

SE(d) 2.25 0.71 3.18 0.758 0.239 1.072 

CD (P=0.05) 4.48** 1.41** NS 1.509** 0.477** 2.135** 

NS- Non Significant, * Significant, ** Highly Significant Figures in parentheses are arcsine transformed values 

 
Table 2: Effect of irrigation regime on Nitrate Reductase activity (μmol NO2 g-1 h-1), Phenol (mg g-1) and Proline (μg g-1) of cocoa genotypes 

 

No types (G) 

Nitrate Reductase activity 

(μmol NO2 g-1 h-1) 
Phenol (mg g-1) Proline (μg g-1) 

Irrigation Regime (I) Irrigation Regime (I) Irrigation Regime (I) 

100 %FC 50 %FC Mean 100 %FC 50 %FC Mean 100 %FC 50 %FC Mean 

TNAUCC 1 12.64 6.12 9.38 1.63 2.98 2.30 248.56 664.25 456.41 

TNAUCC 2 11.42 5.10 8.26 1.45 2.68 2.07 232.72 649.75 441.24 

TNAUCC 3 14.11 6.53 10.32 1.49 2.71 2.10 237.53 661.12 449.33 

TNAUCC 4 12.61 5.73 9.17 1.67 2.59 2.13 246.00 689.78 467.89 

TNAUCC 5 14.60 5.64 10.12 1.34 2.62 1.98 254.03 700.74 477.39 

TNAUCC 6 13.72 5.63 9.67 1.57 2.93 2.25 241.82 721.33 481.58 

TNAUCC 7 10.75 6.16 8.46 1.48 2.84 2.16 253.07 668.31 460.69 

TNAUCC 8 13.24 6.34 9.79 1.65 2.96 2.31 238.94 679.70 459.32 

TNAUCC 9 12.90 5.22 9.06 1.61 2.76 2.19 246.04 736.88 491.46 

TNAUCC 10 13.91 5.36 9.64 1.49 2.63 2.06 248.94 693.66 471.30 

CCRP 1 13.96 6.43 10.20 1.61 2.60 2.11 248.63 666.67 457.65 

CCRP 2 14.46 6.44 10.45 1.81 3.14 2.48 259.61 744.93 502.27 

CCRP 3 13.69 5.88 9.79 1.75 3.03 2.39 240.08 742.64 491.36 

CCRP 4 13.25 6.16 9.71 1.45 2.96 2.21 248.60 703.22 475.91 

CCRP 5 12.23 5.85 9.04 1.34 2.81 2.08 233.53 685.03 459.28 

VTLCC 1 12.14 6.63 9.39 1.77 3.59 2.68 257.20 723.17 490.19 

VTLCH 1 11.24 5.93 8.59 1.47 2.77 2.12 258.75 716.18 487.47 

VTLCH 2 11.74 6.63 9.19 1.65 2.64 2.15 259.60 670.42 465.01 

VTLCH 3 14.30 7.23 10.77 1.60 3.75 2.68 244.76 776.46 510.61 

VTLCH 4 14.62 7.19 10.91 1.75 3.87 2.81 247.86 781.39 514.63 

Mean 13.08 6.11 9.59 1.58 2.94 2.26 247.31 703.78 475.55 

 G I G X I G I G X I G I G X I 

SE(d) 0.170 0.053 0.241 0.027 0.008 0.0390 9.676 3.050 13.68 

CD (P=0.05) 0.339** 0.107** 0.479** 0.0549** 0.0173** 0.077** 19.25** 6.08** 27.22** 

NS- Non Significant, * Significant, ** Highly Significant 
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Fig 1: Effect of irrigation regime on Chlorophyll Stability Index (%) 

in cocoa 

 

 
 

Fig 2: Effect of irrigation regime on Nitrate Reductase activity 

(μmol NO2 g-1 h-1) in cocoa 

 

 
 

Fig 3: Effect of irrigation regime on phenol (mg g-1) content in cocoa 

 

 
 

Fig 4: Effect of irrigation regime on proline (μg g-1) content 

in cocoa 

Conclusion  
Physiological and biochemical parameters were used as a 

predictor or marker for the indirect selection of drought 

tolerant genotypes at drought stressed conditions. VTLCH 3 

and VTLCH 4 showed tolerance to drought due to chlorophyll 

stability and a greater accumulation of proline, phenols, 

NRase and epicuticular wax. The genotype with drought 

tolerance characteristics can be used in the future breeding 

programme.  
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