

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(3): 4024-4028 Received: 13-03-2019 Accepted: 15-04-2019

PK Misra

Krishi Vigyan Kendra, Mau, N D University of Agriculture & Technology, Kumarganj, Faizabad, Uttar Pradesh, India

VP Singh

Krishi Vigyan Kendra, Mau, N D University of Agriculture & Technology, Kumarganj, Faizabad, Uttar Pradesh, India

SN Singh

Krishi Vigyan Kendra, Siddharthnagar, N D University of Agriculture & Technology, Kumarganj, Faizabad, Uttar Pradesh, India

Pardeep Kumar

Krishi Vigyan Kendra, Siddharthnagar, N D University of Agriculture & Technology, Kumarganj, Faizabad, Uttar Pradesh, India

MK Pandey

Krishi Vigyan Kendra, Siddharthnagar, N D University of Agriculture & Technology, Kumarganj, Faizabad, Uttar Pradesh, India

Correspondence PK Misra Krishi Vigyan Kendra, Mau, N D University of Agriculture & Technology, Kumarganj, Faizabad, Uttar Pradesh, India

Impact of front line demonstration in adoption extent and horizontal spread of tomato (Lycopersicon esculentum Mill.) cultivation in Tarai region of Siddharthnagar district, Uttar Pradesh, India

PK Misra, VP Singh, SN Singh, Pardeep Kumar and MK Pandey

Abstract

The present study was undertaken to found the yield gap through FLDS on tomato crop. The Krishi Vigyan Kendra, Siddharthnagar conducted Frontline demonstration on 10 farmers for each year since 2016-17, 2017-18 and 2018-19 in different locations of Tarai belt of Siddharthnagar district. Frontline demonstrations were conducted on tomato by the active participation of the farmers with the objective of improved technologies of tomato production potential. Use of hybrid variety, balanced use of fertilizer on the basis soil testing report and integrated pest and disease management etc are the main technologies to be tested in this demonstration. Tomato is a major vegetable crop of tarai belt of Uttar Pradesh. But the productivity of tomato is very low in this district due to lack of knowledge and partial adoption of recommended package of practice by tomato cultivators. The data of study revealed to the cost of cultivation, production, productivity, gross return and net return were collected as per schedule and analyzed. The result of present study revealed that average highest yield in demonstration was recorded 605.80 q/ha was obtained in demonstrated plot over control (505.30 q/ha) with an additional yield of 100.50 q/ha and the increasing the average tomato productivity by 19.88 per cent. The extension gap and technology gap ranged between 101.10 to 113.0 and 44.20 to 69.60 q/ha, respectively, with the technology index of 9.40 per cent during the demonstration years. Besides this, the demonstrated plots gave higher gross return, net return with higher benefit cost ratio when compared to farmer's practice. In present study efforts were also made to study the impact of FLD on horizontal spread which was increased 209.52 %, if appropriate package and practices are followed.

Keywords: Frontline demonstration, tomato, tarai region, yield, extension gap, technology gap, technology index, adoption and B: C ratio

Introduction

Tomato, (*Lycopersicon esculentum* Mill.), flowering plant of the nightshade family (Solanaceae), cultivated extensively for its edible fruits. Labelled as a vegetable for nutritional purposes, tomatoes are a good source of vitamin C and the phytochemical lycopene. The fruits are commonly eaten raw in salads, served as a cooked vegetable, used as an ingredient of various prepared dishes, and pickled. Additionally, a large percentage of the world's tomato crop is used for processing; products include canned tomatoes, tomato juice, ketchup, puree, paste, and "sun-dried" tomatoes or dehydrated pulp. It is known as productive as well as protective food. Tomato is short duration crop and it is fitted in different cropping system of cereals, grain, pulse and oilseeds and gives higher yields hence is of high economic value. Tomato is one of the most important vegetable crops grown throughout the world under field

and greenhouse conditions (Kaloo, 1986) ^[1]. In India tomato is the third largest vegetable next to only potato and brijnal with the production of about 7.60 Mt (FAO, 2007) ^[2], India ranks third in area and production after China and Japan. The major tomato growing countries are USA, Italy, Spain, Portugal and Turkey. The cultivated tomato was originated in the Peru – Ecuador-Bolivia is of the Andes (South America). The tomato is a warm season vegetable crop that is the sensitive to frost and is killed by freezing temperatures. Previously tomatoes were grown only in season-wise, but the picture has been changed since last 10-12 years. Now day's tomatoes are grown round the year.

India contributes about 11.2 per cent to world tomato production with Andhara Pradesh is highest tomato producer followed by Madhya Pradesh with sharing percentage of 12.94 and 11.68 (Source : Food grains and economics and statistics). Total production is India 4.25 percentage followed by Uttar Pradesh production is 831.16 m ton.

Tomato is a major commercial vegetable crop in Varanasi district. Farmers of the district are facing problems due to climate change which has lead to drought-like situation, drying up of bore wells, scarcity of labour, etc in summers. Besides this lack of knowledge on use of bio-control agents and other simple intercultural operations are predominant reasons in escalating the cost of production and reducing yield potential of tomato. Farmers are also affected by the fluctuations in market prices. These above constraints increases the risk of tomato cultivation and thereby keeping this in view Frontline demonstrations were conducted to reinforce the confidence of farmers in getting increased profitability with better productivity.

India contributes about 11.2 per cent to world tomato production with Andhara Pradesh is highest tomato producer followed by Madhya Pradesh with sharing percentage of 12.94 and 11.68 (Source : Food grains and economics and statistics). Uttar Pradesh production is 831.16 m ton with 4.25 percentage of total India production. Tomato is a major commercial vegetable crop in Varanasi district. Farmers of the district are facing problems due to climate change which has lead to drought-like situation, drying up of bore wells, scarcity of labour, etc in summers. Besides this lack of knowledge on use of bio-control agents and other simple intercultural operations are predominant reasons in escalating the cost of production and reducing yield potential of tomato. Farmers are also affected by the fluctuations in market prices. These above constraints increases the risk of tomato cultivation and thereby keeping this in view Frontline demonstrations were conducted to reinforce the confidence of farmers in getting increased profitability with better productivity.

Material and Methods

The present study was carried out by Krishi Vigyan Kendra Siddharthnagar, Narendra Dev University of Agriculture and Technology, Kumarganj, Faizabad for three consecutive years from 2015-16 to 2017-18 in the farmers field in different locations of tarai belt of Siddharthnagar district through front line demonstration. Front Line Demonstration is one such powerful tool for transfer of technology which practically exhibits the strength of new technologies in increasing yield and profit. Total 30 demonstrations were conducted in 30 farmer's on 3.0 ha lands in three years. Each frontline demonstration was laid out on 0.2 ha area while adjacent 0.2 ha was considered as control for comparison (farmer's practice). The selection of farmers was done on basis of survey by KVK and special training was organized for selected farmers on tomato cultivation. The difference between the demonstration package and existing farmers practice are mentioned in table 2.

For the demonstration plot all the recommended package of practices like the use of bio control agents (Trichoderma & Pseudomonas) enriched FYM, recommended dose of fertilizers, mulching and integrated pest management practices use of quality seeds of improved variety etc. The traditional practices were taken as a control. Field days were also conducted in each cluster to show the results of front line demonstration to the farmers of the same village and neighboring villages. In general, soils of the area under study were sandy to sandy loam with medium to low fertility status and the average annual rainfall of this area is 1200 mm and temperature varies from 15 to 43^oC with average temperature 24^oC. The data of yield, pest management, production cost and returns were collected by KVK, scientists with frequent

field visits during 2015-16 to 2017-18 from front line demonstration plots and farmers practice plot (control plot) and finally extension gap, technology gap, and technology index were calculated as given as formula suggested by Samui *et al.* (2000)^[8] and Dayanand *et al.* (2012)^[9] as given below.

Per cent increase in yield = Demonstration yield - farmers practice yield X 100 /Farmers practice yield

Technology gap = Potential yield -Demonstration yield

Extension gap = Demonstration yield - Yield under existing practice

Technology index = Potential yield - Demonstration yield X 100 /Potential yield

The data of adoption and horizontal spread of technologies were collected from the farmers with the interaction them. Data were subjected to suitable statistical methods. The following formulae were used to assess the impact on different parameters of tomato crop.

Impact of yield = Yield of demonstration plot- yield of control plot/Yield of control plot X 100

Impact on adoption (% change) = No. of adopters after demonstration- No. of adopters before demonstration /No. of adopters before demonstration X 100

Impact on horizontal Spread (% change) = After area (ha) - Before area (ha)

Results and Discussion Yield

The perusal of data (Table 2) indicate that due to front line demonstration on tomato yield ranged from 580.40 q/ ha to 605.80 q/ ha in demonstration plots and from 490.60 q/ ha to 505.30 q/ ha in farmer's practice plot in three years of demonstration. An average yield of 594.32 q/ ha was obtained under demonstration plots as compared to 493.22 q /ha in farmers practice plots in same years. This results clearly indicated that the higher average yield in demonstration plots over the years compare to farmers practice due to knowledge and adoption of full package of practices i.e. use of bio fertilizer enriched FYM, recommended dose of fertilizers, preparation of raised beds, mulching, pheromone traps and timely application of plant protection chemicals. The average yield of tomato is increased by 20.51 per cent. The yield of tomato could be increased over the yield obtained under farmers practices (lack of knowledge on use of bio fertilizers, no use of the balanced dose of fertilizer, no IPM practices) of tomato cultivation. The above findings are in similarity with the findings of Singh et al., (2011)^[13] and Balai et al., (2013). Similarly yield enhancement in different crops in frontline demonstrations were documented by Hiremath et al., (2007) ^[14], Mishra et al. (2009) ^[15], Kumar et al., (2010) ^[17], Surywanshi and Prakash (1993), Dhaka et al. (2010)^[19] and misra et al. (2014)^[16].

The increment in yield ranged between 18.31 to 23.35 per cent. The per cent increase in yield over farmers practice was highest (23.35) during 2016-17. However variations in the yield of tomato in different years might be due to the

variations in soil moisture availability, rainfall, and change in the location of demonstrations every year.

Extension gap: Extension gap of 89.60, 113.0 and 100.50 q/ha was observed during 2015-16, 2016-17 and 2017-18 respectively. On an average extension gap under three year FLD programme was 101.10 q/ha. This emphasized the need to educate the farmers through various techniques for the adoption of improved agricultural production technologies to reverse this trend of wide extension gap. More and more use of latest production technologies with high yielding variety will subsequently change this alarming trend of galloping extension gap.

Technology gap: The technology gap, the differences between potential yield and yield of demonstration plots was 69.60, 55.25 and 44.20 q /ha during 2015-16, 2016-17 and 2012\7-18 respectively. On an average technology gap under three year FLD programme was 55.68 q/ha. This may be due to the soil fertility, managerial skills of individual farmer's and climatic condition of the area. Hence, location specific recommendations are necessary to bridge these gaps. These findings are similar to Singh *et al.* (2011) ^[13], Sharma and Sharma (2004) and Misra *et al.* (2014) ^[16].

Technology Index: The technology index shows the feasibility of the demonstrated technology at the farmer's field. The technology index varied from 7.29 to 11.99 (Table 2). On an average technology index of 9.4 per cent was observed during the three years of FLD programme, which shows the effectiveness of technical interventions. This accelerates the adoption of demonstrated technical interventions to increase the yield performance of tomato.

Economic returns: In order to found the economic feasibility of the demonstration technologies over and above the control, some economic indicators like cost of cultivation, net return and B:C ratio was worked out. The economic viability of improved demonstrated technology over farmers practice was calculated depending on prevailing price of inputs and outputs cost and represented in the term of B:C ratio (Table 3). It was found that the cost of production of tomato under demonstration varied from Rs. 56900 to 62500/ ha with an average of Rs. 59666 as against 51300 to 56500 with an average Rs. 53733 under control. The additional cost increased in demonstration was mainly due to more cost involved in balanced fertilizer, procurement of improved hybrid seed and IPM practices.

The cultivation of tomato under improved technologies gave higher net return of Rs. 1,45,600/ha Rs. 1,58,300 /ha and Rs. 1,63,500 / ha in the year 2015-16, 2016-17 and 2017-18 respectively with an average net return of Rs. 1,55,800/ha which was lower 1,12,766.67 in farmer's practices. The benefit cost ratio of tomato ranged from 2.61 to 2.65 in

demonstration plots and from 2.06 to 2.13 in farmer's practice plots during three years of demonstration with an average of 2.60 in demonstration and 2.09 under farmer's practices. This may be due to higher yield obtained and lower cost of cultivation under improved technologies compared to local check (farmers practice). This finding is similar with the findings of Singh *et al.*, (2011)^[13] and Misra *et al.* (2014)^[16]. Similar findings are also reported by Chapke (2012)^[22] in case of jute.

The B:C ratio was recorded to be higher under demonstration against control during all the years of study. Scientific method of tomato cultivation can reduce the technology gap to a considerable extent, thus leading to increased productivity of tomato in district which in term will improve the economic condition of the growers. Moreover, extension agencies in the district need to provide proper technical support to the farmers through different educational and extension methods to reduce the extension gap for better tomato production in the eastern tarai region of Uttar Pradesh.

The result of improved technology intervention brought out that adoption of recommended hybrid of tomato by farmers before demonstration was negligible, which increased by 106.25 % after demonstration. Transplanting in raised bed technique was increased by 150 % due to intervention through FLD. The overall adoption level of hybrid tomato production technology was increased by about 209.52 percent due to FLD conducted by KVK, Varanasi (Table 4).

In present study efforts were made to study the impact of FLD on horizontal spread of tomato hybrid. Data in Table 5 showed that FLD organized on tomato crop helped to increase area under recommended hybrid. There was significant increase area under horizontally from 5.50 to 28.0 ha under hybrid tomato.

Conclusion

The FLD produced a significant positive result and provided an opportunity to demonstrate the productivity potential and profitability of the latest technology (intervention) under real farming situation. Therefore the study concludes that FLDs conducted by KVK, Varanasi made significant impact on horizontal spread of this technology. Therefore, target oriented training programme on improved vegetable production technology along with multiple demonstration is required to enhance the level of knowledge and skills of growers which help in adoption of technology. This could circumvent some of the constraints in the existing transfer of technology system in the tarai region of Siddharthnagar district of Uttar Pradesh. The productivity gain under FLD over existing practices of tomato cultivation has created greater awareness and motivated other farmers to adopt the demonstrated technologies for tomato production in the district which helps to enhance the vegetable production consumption nutritional security and overall livelihood security of the districts of eastern Tarai belt of Uttar Pradesh.

Table 1: Level of use and	gap in adoption exten of	f tomato technologies in study area
	sup in adoption exten of	tomato teennologies in study area

Crop operations	Improved package of practices	Farmers practices	Gap
Variety	Hybrid Naveen.		
Soil testing	Have done in all locations	Not in practice	Full gap
Seed rate	100 gm/ha	200 gm/ha	Partial gap
Seed priming	Seed priming was performed for better germination. Seeds were soaked during night for 8-10 hours with natural water, drained out excess water and dried in shade before sowing.	Not in practice	Full gap
Seed treatment	Seed was treated by carbendazim @ 1 gm/ kg seeds	Not in practice	Full gap
Transplanting method	Transplanting in raised bed distance Row to Row 90 cm & Plant to Plant 60 cm	Flat bed transplanting Row to Row 60 cm & Plant to Plant 30 cm	Partial gap
Nursery time	September	Last week of September	Partial gap
Transplanting time	October	November	Partial gap
Fertilizer dose	Fertilizer @ 150 Kg N, 115 Kg P ₂ O ₅ and 150 Kg K ₂ O/ha	Without recommendation	Partial gap
Weed dose	Pendimethalin @ 1.0 kg/ha was applied immediately after transplanting.	Hand weeding/rarely used	Partial gap
Multiplex nutrient spry	@ 2.5 gm/ litter water and spray on both surface of leaves. First spray just before flowering, second spray during flowering or 25 days after first spray and third spray when fruits are bean size.	No application	Full gap
Plant protection Measures	Need based in case of severe infestations of TLCV imidaclroprid 17.8 % SL. or dimethoate 30 EC @ 2ml/lt and other systematic chemicals	Use chemicals with recommendations	Partial gap

 Table 2: Productivity, technology gap, technology index and extension gap in tomato under FLD

Area No. of		Yield (q/ha)			%	Extension	Technology	Technology		
Year	Area (ha)	farmers	Potential	Demonstration	Control	Increase in yield	gap (q/ha)	gap (q/ha)	index (%)	
2015-16	1.0	10	650	580.40	490.60	18.31	89.6	69.60	11.99	
2016-17	1.0	10	650	596.75	483.75	23.35	113.00	53.25	8.92	
2017-18	1.0	10	650	605.80	505.30	19.88	100.50	44.20	7.29	
Average	-	-	650	594.32	493.22	20.51	101.10	55.68	9.4	

Control*= Farmers practice use as control

Table 3: Comparative	C:B analysis of tomato	under FLD and farmers practice
----------------------	------------------------	--------------------------------

Veen	Cost of Cultivation		Gross return (Rs./ha)		Net Returns (Rs./ha)		B:C Ratio	
Year	Demo.	Control*	Demo.	Control*	Demo.	Control*	Demo.	Control*
2015-16	56900	51300	202500	159000	145600	107700	2.55	2.09
2016-17	59600	53400	217900	167500	158300	114100	2.65	2.13
2017-18	62500	56500	226000	173000	163500	116500	2.61	2.06
Average	59666.67	53733.33	215465.66	166500	155800	112766.67	2.60	2.09

Control*= Farmers practice use as control

Table 4: Impact of Front Line Demonstration (FLDs) on adoption of Tomato production technology

Tashnalagy	Numbers of	f adopters	Change in No. of adopter	Impact (% Change)
Technology	Before demonstration	After demonstration		
Land preparation and FYM applications	15	37	22	146.66
Recommended hybrid	16	33	17	106.25
Seed rate	05	23	24	360
Transplanting in raised bed	12	30	16	150
Balance fertilizer application	07	23	21	228.57
Weed management	15	25	14	66.66
Spacing & plant populations	08	23	15	187.50
Foliar nutrition	05	17	12	240
Recommended insect pest management	04	20	22	400
Overall impact				209.52

Table 5: Impact of Front Line Demonstration (FLDs) on horizontal spread of tomato hybrid

Variaty	Area	(ha)	Change in area (ha)	Impact (% Change)
Variety	Before demonstration	After demonstration		
Naveen 2000 Hybrid tomato	9.50	38.0	22.50	300.00

References

- 1. Kaloo. Tomato Allied Publication Pvt. Ltds, 1986, New Delhi-203 220
- 2. FAO, 2007
- Anonymous. Indian Horticulture Database 2012. National Horticulture Board, Ministry of Agriculture of India. 2013. Pp. 4
- 4. Government of India. National Horticulture Board, Ministry of Agriculture, Department of Agriculture & Cooperation, New Delhi- India, 2013.
- 5. Food grains and economic statistics, 2012.
- Schonbeck MW. Weed suppression and labor costs associated with organic, plastic and paper mulches in small scale-scale vegetable production. J Sustain. Agric. 1999; 13:13-33.
- Ashrfuzzaman M, Abdul, Ismail MR, Sahidullah SM. Effect of plastic mulch on growth and yield of chilli (*Capsicum annuum* L.). Brazilian Arshives of Biology and Technology. 2011; 54(2):32-330.
- Samui SK, Mitra S, Roy DK, Mandel AK, Saha D. Evaluation of frunt line demonstration on groundnut., J Indian Soc. Sostal Agric. Res. 2000; 18(2):180-183.
- 9. Dayanand VRK, Mehta SM. Boosting mustard production through front line demonstrations. Indian Res J Ext Edu. 2012; 12(3):121-123.
- Hanlon EA, Hochmuth GJ. Fertilizer recommendation for vegetable grown in polythene mulch. Proc. 21st Natl. Agr. Plastics Congr. 1989, 165-171.
- 11. Summers CG, Stapletion JJ. Use of UV reflective mulch to delay the colonization and reduced the severity of *Bemisia argentifolii* (Homoptera: Aleyrodidae) infestations in cucurbits. Crop Prot. 2000; 21:921-928.
- Nagouajio M, Auras R, Fernandez RT, Rubiono M, Counts JW, Kijchavengkul T. Field performance of aliphatic-aromatic copolyster biodegradable mulch films in a fresh market tomato production system. Hort. Technology. 2008; 18(4):605-610.
- Singh R, Soni RL, Singh V, Bugalia HL. Dissemination of improved production technologies of solanaceae vegetables in Banswara district of Rajsthan trough Frontline demonstration. Raj. J Extn., Edu. 2011; 19:97-100.
- Hiremath SM, Nagaraju MV, Shasidhar KK. Impact of frontline demonstration on onion productivity in farmer's field. Paaper presented In: Nation Sem Appropriate Extn Start manag Rural Resource, Univ. Agric., Dharwad, 2007, 18-20, 100.
- 15. Mishra DK, Paliwal DK, Tailer RS, Deshwal AK. Impact of fronline demonstration on yield enhancement of potato. Indian Res. J Ext. Edu. 2009; 9(3):26-28.
- 16. Misra PK, Singh PN, Singh SN, Pradeep Kumar. Adoptation extent and horizontal spread of Tomato (*Lycopericon esculentum* Mill.) cultivation through frontline demonstration in eastern Uttar Pradesh of India. European journal of Biotechnology and Bioscience. 2014; 4:1(6):40-44.
- 17. Kumar A, Kumar R, Yadav VPS, Kumar R. Impact assessment of frontile demonstration of Bajara in Haryana state, Indian Re. J Ext. Edu. 2010; 10(1):105-108.
- Suryawanshi SD, Prakash M. Impact of viable technology of promoting oil seeds in Maharashtra. Indian J Agri. Econ. 1993; 48:420:102-106.
- 19. Dhaka BL, Meena BS, Suwalka RL. Popularization of improved maize production technology through front line

demonstration in south-eastern Rajasthan. J Agri. Sci. 2010; 1(1):39-42.

- Singh R, Soni EL, Singh V, Bugalia HL. Dissemination of improved production technologies of solanaceous vegetable in Hanswara district of Rajasthan through Frontline demonstration. Raj. J Ext. Edu. 2011; 19:97-100.
- Sharma RN, Prakash M. Impact of viable technology of promoting oil seeds in Maharastra. Indian J Agri., Econ. 1993; 48:420, 102-106.
- 22. Chapke RR. Impact of Frontline Deonstration on Jute (*Corchorus olitorious*). Journal of Huan Ecology. 2012; 38(1):37-41.