


# Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com



E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(3): 3132-3138 Received: 10-03-2019 Accepted: 12-04-2019

# **HV Bhoot**

Department of Seed Science and Technology, College of Agriculture, JAU, Junagadh, Gujarat, India

## LK Sharma

Department of Seed Science and Technology, College of Agriculture, JAU, Junagadh, Gujarat, India

## GU Kulkarni

Department of Seed Science and Technology, College of Agriculture, JAU, Junagadh, Gujarat, India

## **Umesh Ravat**

Department of Seed Science and Technology, College of Agriculture, JAU, Junagadh, Gujarat, India

# Sahdev Rathva

Department of Seed Science and Technology, College of Agriculture, JAU, Junagadh, Gujarat, India

Correspondence HV Bhoot Department of Seed Science and Technology, College of Agriculture, JAU, Junagadh, Gujarat, India

# Characterization of sesame genotypes through morphological characters

# HV Bhoot, LK Sharma, GU Kulkarni, Umesh Ravat and Sahdev Rathva

# Abstract

The varietal characterization, varietal identification and genetic purity assessment is utmost important for field functionaries, Certification Officers, Seed Production Officers and Seed Growers for maintaining quality of the seed. Thirty genotypes of sesame were evaluated for various plant and seed morphological traits in three replication using RBD under field condition. The results of the present study clearly indicated that the genotypes of sesame can be distinguished and identified by plant morphological characters. These differences in morphological traits were useful in identification of individual sesame genotypes.

Keywords: Sesame, DUS, varietal identification, morphological characterization

# Introduction

Sesame (*Sesamum indicum* L., 2n = 26) is a very ancient oilseed crop grown next to groundnut and rapeseed and mustard in India. It belongs to the order *tubiflorae*, family *pedaliaceae*. It is basically considered a crop of tropical and sub-tropical regions, but it has also spread to the temperate parts of the world. Africa has been considered to be the primary centre of origin of sesame and it spread early through West Asia to India, China and Japan, which themselves became secondary distribution centers (Weiss, 1983) <sup>[13]</sup>. The flower structure of sesame facilitates cross pollination, although it is considered as self pollinated crop. The extent of natural crossing ranges from 1 to 68 per cent (Ashri, 2007) <sup>[2]</sup>.

Generally the quality of seed is estimated by varietal purity including physical and genetical. A variety/cultivar is an assemblage of cultivated plant which is clearly distinguished by any character (morphological, physiological, cytological, chemical or others) and which when reproduced (sexually or asexually) retains its distinguishing characters. Practically, a variety must show, Distinct, Uniform and Stable (DUS) variations in the characters that are adopted for use in varietal identification. To achieve this mission seed certification schemes have been launched to ensure cultivars identity and purity in the market place. Certification of identity has relied primarily on morphology. (Singh, 2001) <sup>[12]</sup>.

To meet the need for seed certification and to obtain optimum yield, the seed material should be of high quality, *i.e.*, seed should be genetically and physically pure. The production of quality seed involves a number of multiplication stages. But many factors play an important role in affecting the quality of the seed such as cross pollination, admixture and genetic drift as affected by drought, frost, temperature, soil chemical reaction and seed borne diseases. In order to maintain the required genetic purity standards in the seed fields, field inspection, seed and seedling inspection and grow out test are required.

Identification of genotypes based on morphological characteristics of seed, seedling and plant is the most widely used method. According to International Union for Protection of New Plant Varieties (UPOV), any new characteristic used in varietal characterization should be clearly defined, accepted and should have standard method of observation, least or not affected by environment, accessible to breeders, associated with reasonable costs and efforts. For identification of varieties through morphological characters and conduct of GOT, the plant and seed characters need to be studied and thoroughly documented. Emphasis on characterization, varietal identification and genetic purity assessment of sesame cultivars is very important to the field functionaries, certification officers, seed production officers and seed growers for regulating quality of the seed. However, standardized procedures are not available to seed analysts for determining cultivar purity.

# Materials and Methods

Present investigation was carried out at Sagadividi Farm, College of Agriculture, J.A.U, Junagadh during *Kharif* of 2017-18. The experimental material comprised of 30 diverse sesame genotypes including black and white types obtained from Agriculture Research station,

Amreli. Different genotypes were evaluated in three replications using Randomized Block Design (RBD) with each entry in a two row of 4 m length (40 plants/genotype) in each replication. Inter and intra-row space was  $45 \times 15$ cm, respectively. The recommended agronomical and plant protection package of practices were followed for the raising successful crop.

The observations were recorded on 5 randomly selected plants for each character in each replication at different crop growth stages. Data were collected on 28 qualitative traits including morphological characters.

# **Results and Discussion**

Based on variation in physical characteristics, it was attempted to group the sesame genotypes and identify each and every one of them through descriptors. Based on morphological variation, the 30 genotypes could be identified from each other. Based on days to 50 per cent flowering, the genotypes were grouped as early (<36 days) with no genotypes, medium (36-45 days) with eight genotypes and late (>45 days) with twenty two genotypes. Three groups were made based on petal colour of flower. Two genotypes with white, three genotypes with dark purple and twenty five with light purple flower petal colour (Figure 1 and Table 1). Variation were observed among genotypes for flower petal hairiness and based on this, genotypes were classified into two group. 17 genotypes were sparse, while 13 genotypes were dense types (Figure 1 and Table 1).

The height of main stem is one of the important characteristics, which help in differentiating the genotypes as medium and tall. The sesame genotypes exhibited variability in height of main stem. Based on this variation, the genotypes under study were grouped into short < 75 cm with one, medium (75-125 cm) with twenty five and tall (>125 cm) with four genotypes (Figure 3 and Table 1). Based on number of primary branches per plant, the genotypes were grouped as absent (00) with one genotype, few (1-2) with fourteen genotypes, medium (2.1-4) with ten genotypes and profuse (>4) with five genotypes (Figure 3 and Table 1).

Similar findings and grouping of genotypes based on flower and stem morphological characters were made by Parameshwarappa *et al.* (2008) <sup>[9]</sup>, Frary *et al.* (2015) <sup>[5]</sup>, Sarita *et al.* (2015) <sup>[11]</sup>, Azeez *et al.* (2017) <sup>[3]</sup> and Ozcinar and Sogut (2017) <sup>[8]</sup> in sesame.

**Table 1:** Flower and stem morphological characteristics of sesame genotypes

| GenotypesDay | to 50 per cent flower | ingPetal colour of flowerPo | etal hairiness of flowe | rHeight of main stem of plant | Sumber of branches per plant |
|--------------|-----------------------|-----------------------------|-------------------------|-------------------------------|------------------------------|
| AT 253       | Medium                | Light purple                | Sparse                  | Short                         | Few                          |
| AT 282       | Late                  | Dark purple                 | Dense                   | Medium                        | Medium                       |
| AT 314       | Late                  | Dark purple                 | Dense                   | Tall                          | Few                          |
| AT 319       | Late                  | Light purple                | Sparse                  | Medium                        | Medium                       |
| AT 332       | Late                  | Light purple                | Sparse                  | Medium                        | Absent                       |
| AT 334       | Late                  | White                       | Dense                   | Medium                        | Few                          |
| AT 342       | Late                  | Light purple                | Dense                   | Medium                        | Profuse                      |
| AT 345       | Late                  | Light purple                | Sparse                  | Tall                          | Few                          |
| AT 347       | Late                  | Light purple                | Dense                   | Medium                        | Few                          |
| AT 371       | Late                  | Light purple                | Dense                   | Medium                        | Few                          |
| AT 374       | Late                  | Light purple                | Dense                   | Medium                        | Few                          |
| AT 375       | Medium                | Light purple                | Dense                   | Medium                        | Medium                       |
| AT 376       | Late                  | Light purple                | Sparse                  | Medium                        | Few                          |
| AT 377       | Late                  | Light purple                | Sparse                  | Tall                          | Medium                       |
| AT 338       | Late                  | Light purple                | Sparse                  | Medium                        | Medium                       |
| AT 382       | Medium                | Light purple                | Sparse                  | Medium                        | Profuse                      |
| AT 396       | Medium                | Light purple                | Sparse                  | Medium                        | Few                          |
| AT 324       | Medium                | Dark purple                 | Dense                   | Medium                        | Few                          |
| AT 326       | Late                  | Light purple                | Sparse                  | Medium                        | Few                          |
| AT 400       | Late                  | Light purple                | Sparse                  | Medium                        | Profuse                      |
| AT 351       | Late                  | Light purple                | Sparse                  | Medium                        | Medium                       |
| AT 403       | Late                  | White                       | Sparse                  | Medium                        | Profuse                      |
| AT 404       | Late                  | Light purple                | Sparse                  | Medium                        | Medium                       |
| AT 405       | Medium                | Light purple                | Dense                   | Medium                        | Few                          |
| GT 1         | Late                  | Light purple                | Sparse                  | Medium                        | Few                          |
| GT 2         | Medium                | Light purple                | Dense                   | Medium                        | Few                          |
| GT 3         | Medium                | Light purple                | Dense                   | Medium                        | Medium                       |
| GT 4         | Late                  | Light purple                | Dense                   | Medium                        | Medium                       |
| GT 5         | Late                  | Light purple                | Sparse                  | Medium                        | Medium                       |
| GT 10        | Late                  | Light purple                | Sparse                  | Tall                          | Profuse                      |

Based on branching pattern, the genotypes were grouped as basal branching (23 genotypes) and top branching (7 genotypes) (Figure 2 and Table 2). Three groups were made based on days to maturity seven genotypes showed medium (76-85 days), twenty genotypes showed late (86-95 days) and three genotypes showed very late (>95 days) in days to maturity. No variation was found among the genotypes for pigmentation of stem and all the genotypes had weak stem pigmentation (Figure 2 and Table 2). Based on hairiness of stem the genotypes were grouped as sparse (4 genotypes) and absent (26 genotypes) (Figure 2 and Table 2). With regard to number of nodes per plant, the variation was observed and the genotypes were categorized into two main groups namely, less and more. Three genotypes with less (< 15) and twenty seven with more (> 15) node type. Genotypes were examined for the internodal length. In 27 genotypes, the internode were short (< 4.0 cm) and the remaining three showed long (> 4.0 cm) internode (Figure 2 and Table 2).

Similar characterization and grouping of genotypes based on plant morphological characters were made by Parameshwarappa *et al.* (2009), Abdou *et al.* (2015) <sup>[1]</sup> and Kiranmayi *et al.* (2016) <sup>[6]</sup> in sesame.

| Table 2: Plant morphological characte | eristics of sesame ger | otypes |
|---------------------------------------|------------------------|--------|
|---------------------------------------|------------------------|--------|

| Genotypes | <b>Branching pattern</b> | Days to maturity | Hairiness of stem | Number of nodes per plant | Internodal length (cm) |
|-----------|--------------------------|------------------|-------------------|---------------------------|------------------------|
| AT 253    | Basal branching          | Medium           | Absent            | Less                      | Short                  |
| AT 282    | Basal branching          | Late             | Absent            | More                      | Short                  |
| AT 314    | Top branching            | Late             | Absent            | More                      | Short                  |
| AT 319    | Basal branching          | Medium           | Absent            | More                      | Short                  |
| AT 332    | Basal branching          | Late             | Absent            | More                      | Short                  |
| AT 334    | Basal branching          | Late             | Absent            | More                      | Short                  |
| AT 342    | Basal branching          | Late             | Absent            | More                      | Short                  |
| AT 345    | Top branching            | Late             | Absent            | More                      | Short                  |
| AT 347    | Basal branching          | Late             | Sparse            | More                      | Long                   |
| AT 371    | Basal branching          | Late             | Absent            | More                      | Short                  |
| AT 374    | Basal branching          | Late             | Sparse            | More                      | Short                  |
| AT 375    | Top branching            | Medium           | Absent            | Less                      | Short                  |
| AT 376    | Basal branching          | Late             | Absent            | More                      | Short                  |
| AT 377    | Top branching            | Very late        | Absent            | More                      | Short                  |
| AT 338    | Basal branching          | Very late        | Sparse            | More                      | Short                  |
| AT 382    | Basal branching          | Medium           | Absent            | More                      | Short                  |
| AT 396    | Top branching            | Late             | Absent            | More                      | Short                  |
| AT 324    | Basal branching          | Late             | Sparse            | More                      | Short                  |
| AT 326    | Top branching            | Late             | Absent            | More                      | Short                  |
| AT 400    | Basal branching          | Late             | Absent            | More                      | Long                   |
| AT 351    | Top branching            | Late             | Absent            | Less                      | Short                  |
| AT 403    | Basal branching          | Late             | Absent            | More                      | Short                  |
| AT 404    | Basal branching          | Medium           | Absent            | More                      | Short                  |
| AT 405    | Basal branching          | Medium           | Absent            | More                      | Short                  |
| GT 1      | Basal branching          | Late             | Absent            | More                      | Short                  |
| GT 2      | Basal branching          | Late             | Absent            | More                      | Short                  |
| GT 3      | Basal branching          | Late             | Absent            | More                      | Short                  |
| GT 4      | Basal branching          | Medium           | Absent            | More                      | Short                  |
| GT 5      | Basal branching          | Late             | Absent            | More                      | Long                   |
| GT 10     | Basal branching          | Very late        | Absent            | More                      | Short                  |

Based on lobes of leaf, the genotypes did not differentiated. All the 30 genotypes were having slightly lobed leaves (Table 3). The study of length of leaf revealed that sesame genotypes can be classified in to two categories. The four genotypes had medium leaf (8.0-10.0 cm) and remaining 26 genotypes showed long leaf (>10.0 cm) (Figure 4 and Table 2). Difference were also found in serration margin of leaf, 28 genotypes showed weak and remaining two genotypes showed strong margin (Table 3). Based on shape of leaf, the genotypes did not differentiate. All the 30 genotypes were having lanceolate leaf shape (Table 3). Three groups were made based on variation in number of leaves per plant. Leaves of one genotype were few (< 60), seven genotypes with medium (60-80) and twenty two genotypes with many (> 80) leaves per plant. Genotypes were observed for the colour of leaf. In 15 genotypes, the leaves were medium green and remaining 15 genotypes showed dark green colour of leaf (Figure 4 and Table 3). Based on leaf petiole pigmentation, the genotypes were grouped as light (12 genotypes) and medium (18 genotypes) (Figure 4 and Table 3). Similar characterization and grouping of genotypes based on

leaf morphological characters were made by Falusi *et al.* (2015) <sup>[4]</sup>, Sarita *et al.* (2015) <sup>[11]</sup>, Kiranmayi *et al.* (2016) <sup>[6]</sup> and Ozcinar and Sogut (2017) <sup>[8]</sup> in sesame.

| morphological characteristics of sesame genotypes |
|---------------------------------------------------|
| morphological characteristics of sesame genotypes |

| Genotypes | Length of leaf (cm) | Serration of leaf margin | Number of leaves per p | lantColour of leafPeti | iole pigmentation of leaf |
|-----------|---------------------|--------------------------|------------------------|------------------------|---------------------------|
| AT 253    | Long                | Weak                     | Many                   | Dark green             | Medium                    |
| AT 282    | Long                | Weak                     | Many                   | Dark green             | Medium                    |
| AT 314    | Long                | Weak                     | Many                   | Medium green           | Medium                    |
| AT 319    | Medium              | Weak                     | Many                   | Dark green             | Medium                    |
| AT 332    | Long                | Weak                     | Many                   | Dark green             | Light                     |
| AT 334    | Long                | Strong                   | Medium                 | Medium green           | Light                     |
| AT 342    | Long                | Weak                     | Many                   | Dark green             | Light                     |
| AT 345    | Long                | Weak                     | Medium                 | Medium green           | Light                     |
| AT 347    | Long                | Weak                     | Many                   | Dark green             | Medium                    |
| AT 371    | Long                | Weak                     | Medium                 | Medium green           | Medium                    |
| AT 374    | Long                | Weak                     | Many                   | Medium green           | Light                     |
| AT 375    | Medium              | Weak                     | Many                   | Dark green             | Medium                    |
| AT 376    | Long                | Weak                     | Many                   | Medium green           | Medium                    |
| AT 377    | Long                | Weak                     | Many                   | Dark green             | Medium                    |
| AT 338    | Long                | Weak                     | Many                   | Medium green           | Medium                    |
| AT 382    | Long                | Weak                     | Many                   | Medium green           | Light                     |
| AT 396    | Long                | Weak                     | Many                   | Medium green           | Medium                    |
| AT 324    | Long                | Weak                     | Many                   | Medium green           | Medium                    |
| AT 326    | Long                | Weak                     | Many                   | Medium green           | Medium                    |

Journal of Pharmacognosy and Phytochemistry

| AT 400 | Long   | Weak   | Medium | Dark green   | Light  |
|--------|--------|--------|--------|--------------|--------|
| AT 351 | Long   | Weak   | Many   | Medium green | Light  |
| AT 403 | Long   | Weak   | Many   | Dark green   | Light  |
| AT 404 | Long   | Weak   | Many   | Medium green | Light  |
| AT 405 | Long   | Weak   | Medium | Medium green | Medium |
| GT 1   | Long   | Weak   | Few    | Dark green   | Medium |
| GT 2   | Long   | Weak   | Many   | Dark green   | Medium |
| GT 3   | Medium | Weak   | Medium | Dark green   | Medium |
| GT 4   | Long   | Weak   | Many   | Medium green | Light  |
| GT 5   | Long   | Weak   | Medium | Dark green   | Light  |
| GT 10  | Medium | Strong | Many   | Dark green   | Medium |

The study of hairiness of capsule revealed that sesame genotypes can be classified in to three categories. The five genotypes had absent hairiness, 19 genotypes observed as sparse and the remaining six genotypes recorded as dense hairiness types (Figure 5 and Table 4). No variation was found among the genotypes for number of locules per capsule, all genotypes had four locules per capsule (Figure 5 and Table 4). Three groups were made based on shape of capsule. Out of 30 genotypes, one genotype showed tapered, 8 genotypes showed narrow oblong and 21 genotypes recorded as broad oblong types (Figure 5 and Table 4). The study of number of capsules per leaf axil genotypes were grouped into two classes. The 17 genotypes had one and and remaining thirteen genotypes showed more than one capsules per leaf axil (Figure 5 and Table 4). Difference were also observed in arrangement of capsule, 8 genotypes were found alternate, 13 genotypes found opposite and remaining nine genotypes found cluster types (Figure 5 and Table 4). Based on variation in number of capsules per plant, genotypes were grouped into two categories as, moderate (40-100) with twenty five genotypes and more (> 100) with five genotype. Two groups were made based on length of capsule. Out of 30 genotypes, nine genotypes were showed medium (< 1.5 cm) and 21 genotypes observed long (1.5-2.5 cm) length of capsule (Figure 5 and Table 4). Based on beak of capsule, genotypes were grouped into two categories as, short (8 genotypes) and long (22 genotypes) beaked types (Figure 5 and Table 1). Based on the pubescence of capsule all the genotypes were divided into three groups namely nil (5 genotypes), medium (19 genotypes) and dense (6 genotypes) pubescent types (Figure 5 and Table 4). Based on capsule dehiscence, the genotypes did not differentiated. All the 30 genotypes were having dehiscent type's capsules (Figure 5 and Table 4).

Similar observations and grouping of genotypes based on capsule morphological characters were made by Narayanan and Murugan (2013)<sup>[7]</sup>, Abdou *et al.* (2015)<sup>[1]</sup>, Zhigila *et al.* (2015) and Azeez *et al.* (2017)<sup>[3]</sup> in sesame.

**Table 4:** Capsule morphological characteristics of sesame genotypes

| Genotypes | Hairiness of capsul | eShape of capsule | Number of capsules per leaf axil | Number of capsules per plan | ntArrangement of capsule |
|-----------|---------------------|-------------------|----------------------------------|-----------------------------|--------------------------|
| AT 253    | Sparse              | Narrow oblong     | More than one                    | Moderate                    | Alternate                |
| AT 282    | Sparse              | Broad oblong      | One                              | Moderate                    | Alternate                |
| AT 314    | Sparse              | Narrow oblong     | One                              | Moderate                    | Alternate                |
| AT 319    | Absent              | Broad oblong      | One                              | Moderate                    | Opposite                 |
| AT 332    | Absent              | Broad oblong      | More than one                    | Moderate                    | Cluster                  |
| AT 334    | Sparse              | Broad oblong      | More than one                    | More                        | Cluster                  |
| AT 342    | Sparse              | Narrow oblong     | One                              | Moderate                    | Opposite                 |
| AT 345    | Sparse              | Broad oblong      | One                              | More                        | Opposite                 |
| AT 347    | Sparse              | Broad oblong      | One                              | Moderate                    | Opposite                 |
| AT 371    | Sparse              | Narrow oblong     | One                              | Moderate                    | Alternate                |
| AT 374    | Dense               | Broad oblong      | More than one                    | Moderate                    | Alternate                |
| AT 375    | Sparse              | Broad oblong      | One                              | Moderate                    | Opposite                 |
| AT 376    | Sparse              | Broad oblong      | One                              | Moderate                    | Cluster                  |
| AT 377    | Sparse              | Narrow oblong     | One                              | Moderate                    | Alternate                |
| AT 338    | Dense               | Broad oblong      | One                              | Moderate                    | Opposite                 |
| AT 382    | Sparse              | Broad oblong      | More than one                    | More                        | Alternate                |
| AT 396    | Sparse              | Narrow oblong     | One                              | Moderate                    | Opposite                 |
| AT 324    | Dense               | Narrow oblong     | More than one                    | Moderate                    | Opposite                 |
| AT 326    | Absent              | Narrow oblong     | One                              | Moderate                    | Cluster                  |
| AT 400    | Dense               | Broad oblong      | One                              | More                        | Opposite                 |
| AT 351    | Dense               | Broad oblong      | More than one                    | Moderate                    | Opposite                 |
| AT 403    | Absent              | Broad oblong      | One                              | Moderate                    | Opposite                 |
| AT 404    | Sparse              | Broad oblong      | More than one                    | Moderate                    | Cluster                  |
| AT 405    | Sparse              | Broad oblong      | More than one                    | Moderate                    | Cluster                  |
| GT 1      | Sparse              | Broad oblong      | More than one                    | Moderate                    | Cluster                  |
| GT 2      | Dense               | Broad oblong      | More than one                    | Moderate                    | Cluster                  |
| GT 3      | Sparse              | Broad oblong      | One                              | Moderate                    | Opposite                 |
| GT 4      | Sparse              | Broad oblong      | More than one                    | Moderate                    | Cluster                  |
| GT 5      | Absent              | Broad oblong      | More than one                    | Moderate                    | Opposite                 |
| GT 10     | Sparse              | Tapered           | One                              | More                        | Alternate                |

| Genotypes | Length of capsule (cm) | Beak of capsule | Pubescence of capsule |
|-----------|------------------------|-----------------|-----------------------|
| AT 253    | Long                   | Long            | Medium                |
| AT 282    | Long                   | Short           | Medium                |
| AT 314    | Long                   | Long            | Medium                |
| AT 319    | Long                   | Short           | Nil                   |
| AT 332    | Medium                 | Long            | Nil                   |
| AT 334    | Long                   | Long            | Medium                |
| AT 342    | Long                   | Long            | Medium                |
| AT 345    | Long                   | Short           | Medium                |
| AT 347    | Long                   | Long            | Medium                |
| AT 371    | Long                   | Short           | Medium                |
| AT 374    | Long                   | Long            | Dense                 |
| AT 375    | Medium                 | Long            | Medium                |
| AT 376    | Medium                 | Short           | Medium                |
| AT 377    | Medium                 | Long            | Medium                |
| AT 338    | Long                   | Short           | Dense                 |
| AT 382    | Long                   | Long            | Medium                |
| AT 396    | Medium                 | Long            | Medium                |
| AT 324    | Long                   | Short           | Dense                 |
| AT 326    | Long                   | Long            | Nil                   |
| AT 400    | Long                   | Long            | Dense                 |
| AT 351    | Medium                 | Long            | Dense                 |
| AT 403    | Long                   | Long            | Nil                   |
| AT 404    | Long                   | Short           | Medium                |
| AT 405    | Long                   | Long            | Medium                |
| GT 1      | Medium                 | Long            | Medium                |
| GT 2      | Long                   | Long            | Dense                 |
| GT 3      | Long                   | Long            | Medium                |
| GT 4      | Long                   | Long            | Medium                |
| GT 5      | Medium                 | Long            | Nil                   |
| GT 10     | Medium                 | Long            | Medium                |

Morphological features of genotypes have been a major component of varietal identification. It is not possible to identify varieties using any single parameter. A detailed morphological description of plants and seeds should therefore be prepared. Utilization of these features in sequential fashion is useful and convenient to distinguish different genotypes.

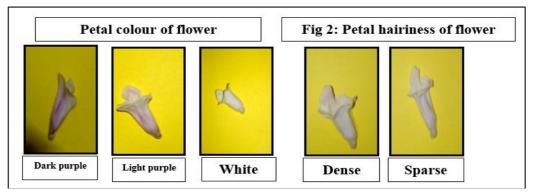



Fig 1: Flower morphological characters

| Height of plant |        |       | Number of branches per plant |     |        |         |
|-----------------|--------|-------|------------------------------|-----|--------|---------|
| W.              |        |       | The second                   |     | W.     |         |
| Tall            | Medium | Short | Absent                       | Few | Medium | Profuse |

Fig 2: Plant morphological characters

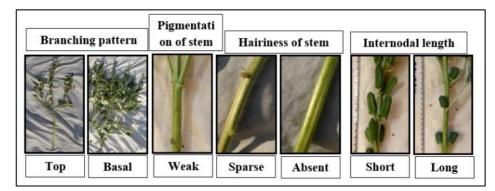



Fig 3: Stem morphological characters

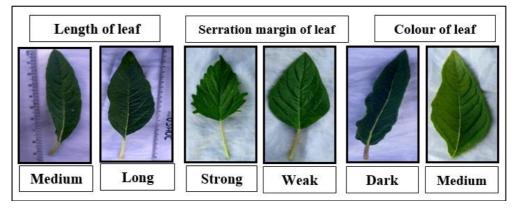



Fig 4: Leaf morphological characters

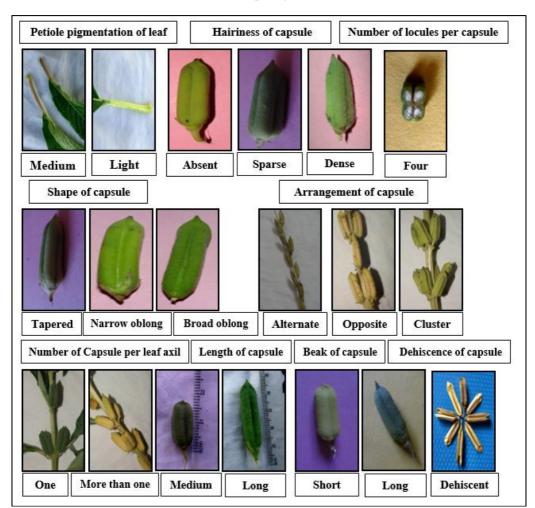



Fig 5: Capsule morphological characters

# References

- 1. Abdou RIY, Moutari A, Ali B, Basso Y, Djibo M. Variability study in sesame (*Sesamum indicum* (L.) cultivars based on agro-morphological characters. Int. J Agric. Forest. Fisheries. 2015; 3(6):237-242.
- Ashri A. Sesame (*Sesamum indicum* L.). In: Singh, R.J. (Ed.). Genetic Resources, Chromosome Engineering and Crop Improvement, Oilseed Crops. CRC Press, Boc. Raton, FL. USA, 2007; 4:231-289.
- 3. Azeez MA, Olowookere MB, Animasaun DA, Bello BO. Utility of some floral characters in the assessment of genetic diversity in sesame (*Sesamum indicum* L.). Acta Agriculturae Slovenica, 2017; 109(1):61-70.
- Falusi OA, Yahaya SA, Gado AA, Daudu OAY, Akinbo OA, Teixeira da Silva JA. Morphological evaluation of selected sesame (*Sesamum indicum* L.) genotypes from five states in Northern Nigeria. African J Agric. Res., 2015; 10(37):3657-3661.
- Frary A, Tekin P, Celik I, Furat S, Uzun B, Doganlar S. Morphological and Molecular Diversity in Turkish Sesame Germplasm and Core Set Selection. Crop Sci. 2015; 55:702-711.
- 6. Kiranmayi SL, Roja V, Padmalatha K, Sivaraj N, Sivaramakrishnan S. Genetic diversity analysis in sesame (*Sesamum indicum*) using morphological, biochemical and molecular techniques. IJABFP. 2016; 7(1):95-110.
- Narayanan R, Murugan S. Studies on variability and heritability in sesame (*Sesamum indicum* L.). Int. J Curr. Agril. Res., 2013; 2(11):52-55.
- 8. Ozcinar AB, Sogut T. Analysis of sesame (*Sesamum indicum* L.) accessions collected from different parts of turkey based on qualitative and quantitative traits. J Crop Breed. Genet. 2017; 3(1):45-51.
- 9. Parameshwarappa SG, Palakshappa MG, Salimath PM, Parameshwarappa KG. Evaluation and characterization of germplasm accessions of sesame (*Sesamum indicum* L.). Karnataka J Agric. Sci. 2008; 22(5):1084-1086.
- Pooja R, Sangwan O, Siwach SS, Sangwan RS, Pundir SR, Nimbal S. Morphological characterization of elite genotypes of upland cotton (*Gossypium hirsutum* L.). J of Cott. Res. and Develop. 2016; 30:36-40.
- Sarita K, Arna D, Pooja Rai, Tapash Dasgupta. Morphological and genetic diversity assessment of sesame (*Sesamum indicum* L.) accessions differing in origin. *Physiol. Mol. Biol. Plants.*, 2015; 21(4):519-529.
- 12. Singh R. Characterization of chickpea cultivars by field and laboratory techniques (Doctoral dissertation, Chaudhary Charan Singh Haryana Agricultural University, Hisar), 2001.
- 13. Weiss EA. Oilseed Crops, Longman, New York, 1983, 660.