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Abstract 

The use of external chemical inputs such as chemical fertilizers and pesticides undoubtedly resulted in 

huge increase in agricultural products in the past many decades in developing countries like India. Such 

indiscriminate use of agrochemicals has resulted not only in the deterioration of soil health but also has 

led to some major environmental disasters and other health related problems, besides increasing the input 

cost for crop production especially on the marginal farmers. So, the use of plant growth-promoting 

rhizobacteria (PGPR) as biofertilizers and/or as biocontrol agents to enhance plant growth and yield, 

suppress diseases in a wide range of agricultural crops and improve the socio-economic status of poor 

farmers is gaining momentum. The present review highlights the role of plant growth promoting 

rhizobacteria in the process of crop production and health, development of sustainable agriculture and 

their commercialization with global applicability. 
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Introduction 

Agriculture is highly dependent on the use of chemical fertilizers, growth regulators, 

fungicides and pesticides for obtaining increased yield. This dependence is associated with 

problems such as environmental pollution, health hazards, interruption of natural ecology, 

nutrient recycling and destruction of biological communities that otherwise support crop 

production. The use of bioresources to replace these chemicals is gaining importance. In this 

context, plant growth promoting rhizobacteria (PGPR) are often considered as novel and 

potential tool to provide substantial benefits to agriculture. PGPR are a heterogeneous group of 

bacteria that can be found in the rhizosphere, at root surfaces and in association with roots, 

which stimulate plant growth through a wide variety of mechanisms like phosphate 

solubilisation, siderophore production, biological nitrogen fixation, production of 1-

Aminocyclopropane-1-carboxylate deaminase (ACC), phytohormone production, exhibiting 

antifungal activity, production of volatile organic compounds (VOCs), induction of systemic 

resistance, promoting beneficial plant-microbe symbioses, interference with pathogen toxin 

production etc. through suppression of deleterious root colonizing microorganisms and by 

production of plant growth regulators (Kloepper and Schroth, 1981)  [59]. PGPR are present in 

large number on the root surface where the plants exudates provide nutrients (Nelson, 2004) 

[80]. The beneficial response of crops to inoculation with these PGPR is attributed to better seed 

germination and seedling emergence, improved nutrition, and reduction in disease incidence 

an increased crop production. Growth promoting substances are likely to be produced in large 

quantities by these rhizosphere microorganisms that influence indirectly on the overall 

morphology of the plants. The concept of PGPR has now been confined to the bacterial strains 

that can fulfil at least two of the three criteria such as aggressive colonization, plant growth 

stimulation and biocontrol (Weller et al., 2002; Vessey, 2003) [117, 114]. 

 

Classification of PGPR 

In accordance with their degree of association with the plant root cells, PGPRs can be 

classified into extracellular plant growth promoting rhizobacteria (ePGPR) and intracellular 

plant growth promoting rhizobacteria (iPGPR) (Martinez-Viveros et al., 2010) [71]. The 

ePGPRs may exist in the rhizosphere, on the rhizoplane or in the spaces between the cells of 

root cortex. The bacterial genera such as Agrobacterium, Arthrobacter, Azotobacter, 

Azospirillum, Bacillus, Burkholderia, Caulobacter, Chromobacterium, Erwinia, 

Flavobacterium, Micrococcous, Pseudomonas and Serratia belongs to ePGPR (Gray and 

Smith, 2005). Whereas, iPGPRs locates generally inside the specialized nodular structures of 

root cells. They include the endophytes and Frankia species both of which can symbiotically 

fix atmospheric N2 with the higher plants (Verma et al., 2010) [113].  
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Endophyte includes a wide range of soil bacterial genera such 

as Allorhizobium, Azorhizobium, Bradyrhizobium, 

Mesorhizobium and Rhizobium of the family Rhizobiaceae 

that generally invades the root systems in crop plants to form 

nodules (Wang and Martinez-Romero, 2000) [116] and 

stimulates growth either directly or indirectly.  

 

Mechanism of action 

Plant growth promotion by plant growth promoting 

rhizobacteria is a well-known phenomenon and there are a 

number of mechanisms used by PGPR for enhancing plant 

growth and development in diverse environmental conditions. 

The effective PGPRs increased plant growth basically by 

changing the whole microbial community structure in 

rhizosphere (Kloepper and Schroth, 1981) [59]. PGPR strains 

can promote plant growth and development either directly due 

to their ability for enhancing plant nutrition by solubilization 

of minerals like phosphorus and iron, producing siderophores 

and enzymes, producing phytohormone (auxin, cytokinins and 

gibberellins), lowering level of ethylene and inducing 

systemic resistance (Bhattacharyya and Jha, 2012) [10], or 

indirectly by biocontrol of deleterious microorganisms or root 

pathogens that inhibit plant growth, including antibiotic 

production, parasitism, competition for nutrients and niches 

within the rhizosphere, synthesis of extracellular enzymes to 

hydrolyse the fungal cell wall, decreasing pollutant toxicity 

(Bhattacharyya and Jha, 2012; Podile and Kishore, 2006) [10, 

85]. PGPR may use more than one of these mechanisms to 

enhance plant growth as experimental evidence suggests that 

the plant growth stimulation is the net result of multiple 

mechanisms that may be activated simultaneously (Martinez-

Viveros et al., 2010) [71]. 

 
Table 1: Forms of PGPRs and their mechanism of action stimulating plant growth 

 

PGPR 

forms 
Definition Mechanism of action References 

Biofertilizer 

A substance that contains live microorganisms which, when 

applied on the seed, plant surface or soil, colonizes the 

rhizosphere and promote plant growth through increased supply 

of primary nutrients for the host plant 

Biological nitrogen fixation 

Utilization of insoluble 

phosphorus 

Vessey, 2003; Somers et al., 

2004; Fuentes-Ramirez and 

Caballero-Mellado, 2006 [114, 

106, 115]. 

Phyto-

stimulator 

Microorganism, with the ability to produce phytohormones such 

as indole acetic acid, gibberellic acid, cytokinins and ethylene 
Production of phytohormones 

Lugtenberg et al., 2002; Somers 

et al., 2004 [67, 106]. 

Biopesticide 
Microorganisms that promote plant growth by controlling 

phytopathogenic agents 

Production of antibiotics, 

siderophores, HCN Production of 

hydrolytic enzymes 

Acquired and Induced systemic 

resistance 

Vessey, 2003; Somers et al., 

2004; Chandler et al., 2008 [114, 

106, 14]. 

Source: Martinez-Viveros et al., 2010 [71] 

 

Role of PGPR in agriculture 

Direct mechanisms 

Nitrogen fixation 

Nitrogen is one of the principal plant nutrients, becoming a 

limiting factor in agricultural ecosystems due to heavy losses 

by rainfall or mineral leaching. Plant growth promoting 

rhizobacteria have the ability to fix atmospheric nitrogen and 

provide it to plants by two mechanisms: symbiotic and non-

symbiotic. Rhizobia are a vast group of rhizobacteria that 

have the ability to lay symbiotic interactions by the 

colonization and formation of root nodules with leguminous 

plants, where nitrogen is fixed to ammonia and make it 

available for the plant (Ahemad and Kibret (2014) [2]. The 

plant growth promoting rhizobacteria widely presented as 

symbionts are Rhizobium, Bradyrhizobium, Sinorhizobium 

and Mesorhizobium with leguminous plants, Frankia with 

non-leguminous trees and shrubs (Zahran, 2001) [122]. Various 

rhizobacterial species like Azotobacter spp., Bacillus spp., 

Beijerinckia spp., etc., have the capacity to fix atmospheric N2 

symbiotically. On the other hand, non-symbiotic nitrogen 

fixation is carried out by free living diazotrophs and this can 

stimulate non-legume plants growth. Non-symbiotic nitrogen 

fixing rhizospheric bacteria belonging to genera including 

Azoarcus, Azotobacter, Acetobacter, Azospirillum, 

Burkholderia, Diazotrophicus, Enterobacter, 

Gluconacetobacter, Pseudomonas and Cyanobacteria 

(Anabaena, Nostoc) (Bhattacharyya and Jha, 2012 [10]; 

Vessey, 2003) [114]. Besides, combined inoculations of 

rhizobacterial species to improve the quality of soil are also 

seemed to be a potent area of research in present day 

agriculture. For instances, combined inoculations of 

Bradyrhizobium sp., with Pseudomonas striata have 

established enhanced nodule occupancy in soyabean resulting 

in more biological N2 fixation (Dubey, 1996) [25]. Cakmakci et 

al. (2007) [27] studied that on inoculating the barley seeds with 

five different N2-fixing (Bacillus licheniformis RC02, 

Rhodobacter capsulatus RC04, Paenibacillus polymyxa 

RC05, Pseudomonas putida RC06, and Bacillus OSU-142) 

and two different phosphate-solubilising (Bacillus 

megaterium RC01 and Bacillus M-13) in greenhouse 

conditions, all bacterial strains fixed N2 and significantly 

increased the growth of barley and total culturable bacteria 

count. Maximum NO3-N was found in soil after inoculation 

with N-fixing Bacillus OSU-142, followed by P. polymyxa 

RC05 and R. capsulatus RC04.  

 

Phosphorous solubilization 

Phosphorus is one of the most essential nutrient requirements 

in plants. Ironically, soils may have large reservoir of total 

phosphorous (P) but the amounts available to plants are 

usually a tiny proportion of this total. This low availability of 

phosphorous to plants is because of the vast majority of soil P 

is found in insoluble forms, while the plants can only absorb it 

in two soluble forms, the monobasic (H2PO4
-) and the dibasic 

(HPO4
2-) ions (Glass 1989) [38]. Several phosphate solubilizing 

microorganisms (PSMs) are now recorded to convert the 

insoluble form of phosphorus to soluble form through 

acidification, secretion of organic acids or protons 

(Richardson et al., 2009) [91] and chelation and exchange 

reactions (Hameeda et al., 2008) [48]. Of the various PSMs 

inhibiting rhizosphere, Phosphate Solubilizing Bacteria (PSB) 

are considered as promising biofertilizers since they can 

supply plants with P from sources otherwise poorly available 

by various mechanisms (Fig. 1) (Khan et al., 2006) [56]. 
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Saprophytic bacteria and fungi are reported for the chelation- 

mediated mechanisms (Whitelaw, 2000) [118] to solubilise 

phosphate in soil. Release of plant root exudates such as 

organic ligands can also alter the concentration of P in soil 

solution (Hinsinger, 2001) [51]. 

 

 
Source: Khan et al., 2006 [56] 

 

Fig 1: Mechanisms of P solubilization by phosphate solubilizing bacteria 

 

Bacterial genera like Azotobacter, Bacillus, Beijerinckia, 

Burkholderia, Enterobacter, Erwinia, Flavobacterium, 

Microbacterium, Pseudomonas, Rhizobium and Serratia are 

reported as the most significant phosphate solubilizing 

bacteria (Bhattacharyya and Jha, 2012) [10]. Rhizobacteria can 

solubilize inorganic P sources and enhance growth and yield 

of crop plants. The ability of PGPRs to solubilize mineral 

phosphate, therefore, has been of immense interest to 

agricultural microbiologists since it can enhance the P uptake 

of crops. Synthesis of organic acids by rhizosphere 

microorganisms could be the possible reason for 

solubilisation of inorganic P sources. 

 

Potassium solubilization 
Potassium (K) is the third major essential macronutrient for 

plant growth. The concentrations of soluble potassium in the 

soil are usually very low and more than 90% of potassium in 

the soil exists in the form of insoluble rocks and silicate 

minerals (Parmar and Sindhu, 2013) [82], most of which is 

unavailable for plant uptake. Potassium deficiency has been 

reported as one of the major constraints in crop production 

which might be due to imbalanced fertilizer utilization and 

depletion of K in the soil system. Since cost of K-fertilizers is 

increasing every year (Meena et al., 2014) [74] and also use of 

these fertilizers has harmful effects on the environment, it is 

necessary to find an alternative indigenous source of K and 

maintain K level in soils for sustainable crop production 

(Kumar and Dubey, 2012) [62]. A wide range of bacteria 

namely Pseudomonas, Burkholderia, Acidothiobacillus 

ferrooxidans, Bacillus mucilaginosus, Bacillus edaphicus, B. 

circulans and Paenibacillus sp. has been reported to release 

potassium in accessible form from potassium-bearing 

minerals in soils (Lian et al., 2002; Sheng, 2005; Liu et al., 

2012) [64, 103, 65]. The most important mechanisms involved by 

these potassium solubilizing bacteria (KSB) in K 

solubilization from insoluble K-bearing minerals are (i) by 

lowering the pH, (ii) by enhancing chelation of the cations 

bound to K and (iii) acidolysis of the surrounding area of 

microorganism (Meena et al., 2014) [74]. Thus, application of 

potassium solubilizing plant growth promoting rhizobacteria 

as biofertilizer for agriculture improvement can reduce the use 

of agrochemicals and support eco-friendly crop production. 

Different PGPR species having the ability to solubilize 

potassium and exerting beneficial effects on growth of various 

crops are given in Table 2. 

 
Table 2: Different PGPR strain as potassium solubilizer in number of crops 

 

PGPR Crop Reference 

Bacillus edaphicus Cotton and rape Sheng, 2005 [103] 

Bacillus mucilaginosus Pepper and cucumber Han et al., 2006 [7] 

Bacillus cereus Sorghum Badr et al., 2006 [49] 

Bacillus edaphicus Wheat Sheng and He, 2006 [101] 

Bacillus mucilaginous Sudan grass Basak and Biswas, 2008 

Bacillus mucilaginosus, Azotobacter chroococcum and Rhizobium Maize and wheat Singh et al., 2010 [9] 

Paenibacillus glucanolyticus Black pepper Sangeeth et al., 2012 [95] 

Enterobacter hormaechei Okra Prajapati et al., 2013 [88] 

Pseudomonas putida Tea Bagyalakshmi et al., 2012 

Enterobacter hormaechei (KSB-8) Cucumber Prajapati and Modi, 2016 [87] 

 

Sequestration of Iron by Siderophores 

Iron is one of the bulk minerals present on earth surface, yet it 

is unavailable in the soil for plants. This is because iron is 

commonly found in nature in Fe3+ form which is meagrely 

soluble and its concentration is too low to support microbial 

growth. To survive, the PGPR’s synthesize and secrete 

siderophores that are low molecular iron binding protein 

compound having a high binding affinity with ferric iron. 

When Fe is limited, microbial siderophore provide plant with 

Fe, enhancing their growth. Thus, siderophores act as 
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solubilizing agents for iron from minerals or organic 

compounds under conditions of iron limitation (Indiragandhi 

et al., 2008) [52]. Among PGPRs, fluorescent pseudomonads 

are widely reported for their broad-spectrum antagonistic 

activity against number of phytopathogens. Han et al. (2005) 

[50] reported that Delftia tsuruhatensis strain, HR4 have 

suppressed the growth of various plant pathogens like 

Pyricularia oryzae, Rhizoctonia solani and Xanthomonas 

oryzae. Different PGPR strains of Rhizobium meliloti have 

been reported to produce siderophores in iron stress 

conditions (Arora et al., 2001) [5]. Sharma et al. (2003) [100] 

assessed the role of the siderophore-producing Pseudomonas 

strain GRP3 on iron nutrition of Vigna radiata. Crowley and 

Kraemer (2007) [17] also revealed a siderophore mediated iron 

transport system in oat plants and inferred that siderophores 

produced by rhizosphere microorganisms deliver iron to oat, 

which has mechanisms for using Fe-siderophore complexes 

under iron-limited conditions.  

 

Production of plant growth regulators 

PGPR can alter root architecture and promote plant 

development by producing different phytohormones like IAA, 

gibberellic acid and cytokinins (Kloepper et al., 2007) [58]. 

Several PGPRs as well as some pathogenic, symbiotic and 

free living rhizobacterial species are reported to produce IAA 

and gibberellic acid in the rhizospheric soil and thereby play a 

significant role in increasing the root surface area and number 

of root tips in many plants (Han et al., 2005) [50]. Swain et al. 

(2007) [109] reported a positive effect of IAA producing strains 

of Bacillus subtilis on Dioscorea rotundata L. They applied a 

suspension of B. subtilis on the surface of the plant, which 

resulted in an increase in the root: stem ratio as well as 

number of sprouts as compared with the non-inoculated 

plants. Similarly, significant shoot growths in maize and rice 

dwarf mutants were promoted by gibberellins-like substances 

excreted by Azospirillum spp. (Boiero et al., 2007) [12]. Table 

3 represents some of the efficient PGPR strains as the 

producer of different plant growth regulators. 

 
Table 3: Efficient PGPR strains as phytohormone producer in numbers of plants 

 

Hormone produced PGPR Host Reference 

IAA 

Agrobacterium sp. Lettuce Bhattacharyya and Jha (2012) [10] 

Azospirillum brasilense Wheat Thakuria et al. (2004) [110] 

Bradyrhizobium japonicum Maize Shaharoona et al. (2006) [99] 

Rhizobium leguminosarum Radish Bhattacharyya and Jha (2012) [10] 

Rhizobium phaseoli Green gram Zahir et al. (2010) [121] 

Bacillus subtilis Mustard Zaidi et al. (2006) [123] 

Pseudomonas fluorescens Peanut Dey et al. (2004) [22] 

Paenibacillus polymyxa Pepper Phi et al. (2010) [83] 

Xanthomonas sp. RJ3 Rape Sheng and Xia (2006) [102] 

Sphingomonas sp., Mycobacterium sp., Bacillus sp., Rhodococcus 

sp., Cellulomonas sp., Pseudomonas sp. 
Orchid Tsavkelova et al. (2005) [112] 

Cytokinin 

Paenibacillus polymyxa Pseudomonas Wheat Timmusk et al. (1999) [111] 

fluorescens Soybean Bhattacharyya and Jha (2012) [10] 

Rhizobium leguminosarum Rape and lettuce Bhattacharyya and Jha (2012) [10] 

Gibberellin Bacillus sp. Alder Bhattacharyya and Jha (2012) [10] 

 

IAA-mediated ethylene production could increase root 

biomass, root hair number and consequently the root surface 

area of PGPR inoculated tomato plants (Ribaudo et al., 2006) 
[90]. the fresh weights of shoot and root tissue from inoculated 

plants were about 40% and 30% higher, respectively, than 

comparable weights of control plants. A small but statistically 

significant (about 20%) increase in shoot height was also 

observed. the amount of IAA in shoots and roots increased 

upon Azospirillum inoculation (7-and 19-fold increase, 

respectively). 

 

Lowering Plant Ethylene Levels 
Generally, ethylene is an essential metabolite for the normal 

growth and development of plants (Khalid et al., 2006) [55], 

produced endogenously by approximately all plants and also 

by different biotic and abiotic processes in soils. Under stress 

conditions like those generated by salinity, drought, water 

logging, heavy metals and pathogenicity, the endogenous 

level of ethylene is significantly increased which negatively 

affects the overall plant growth leading to inhibition of root 

elongation, as well as symbiotic N2 fixation in leguminous 

plants and can even result in plant death under extreme 

conditions. Plant growth promoting rhizobacteria which 

possess the enzyme, 1-aminocyclopropane-1-carboxylate 

(ACC) deaminase, facilitate plant growth and development by 

decreasing ethylene levels, inducing salt tolerance and 

reducing drought stress in plants (Nadeem et al., 2007; Zahir 

et al., 2008) [78, 120]. Ahmad et al. (2013) [3] proved that 

Rhizobium and Pseudomonas strains can produce ACC-

deaminase and helps in improving the growth, physiology and 

quality of mung beans under salt-affected environments.  

 

Production of ACC deaminase and regulation of ethylene 

level in plants 

Although ethylene is essential for normal growth and 

development in plants, at high concentration it can be harmful 

as it induces defoliation and other cellular processes that may 

lead to reduced crop performance. Using their 1-amino 

cyclopropane-1-carboxylic acid (ACC) deaminase activity, 

PGPR can divert ACC from the ethylene biosynthesis 

pathway in the root system of Arabidopsis thaliana plant 

(Desbrosses et al., 2009) [21]. Thus, rhizobacteria assist in 

diminishing the accumulation of ethylene levels and re-

establish a healthy root system needed to cope with 

environmental stress. The primary mechanism includes the 

destruction of ethylene via enzyme ACC deaminase. There 

are number of publications (Ghosh et al., 2003; Govindasamy 

et al., 2008; Duan et al., 2009) [36, 44, 24] mentioning 

rhizosphere bacteria such as Achromobacter, Azospirillum, 

Bacillus, Enterobacter, Pseudomonas and Rhizobium with 

ACC deaminase activity. Most of the studies have 

demonstrated the production of ACC deaminase gene in the 
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plants treated with PGPR under environmental stress. Grichko 

and Glick (2001) [46] inoculated tomato seeds with 

Enterobacter cloacae and Pseudomonas putida expressing 

ACC deaminase activity and registered an increase in plant 

resistance. Ghosh et al. (2003) [36] recorded ACC deaminase 

activity in three Bacillus species namely, Bacillus circulans 

DUC1, Bacillus firmus DUC2 and Bacillus globisporus 

DUC3 that stimulated root elongation in Brassica campestris. 

Mayak et al. (2004) [73] observed tomato plants inoculated 

with the bacterium Achromobacter piechaudii under water 

and saline stress conditions and reported a significant increase 

in fresh and dry weight of inoculated plants.  

 

Production of volatile organic compounds 

The discovery of rhizobacterial-produced volatile organic 

compounds (VOCs) constitutes an important mechanism for 

the elicitation of plant growth by rhizobacteria. Ryu et al. 

(2003) [92] recorded some PGPR strains namely Bacillus 

subtilis GB03, B. amyloliquefaciens IN937a and Enterobacter 

cloacae JM22 that released a blend of volatile components, 

particularly, 2,3-butanediol and acetoin, which promoted 

growth of Arabidopsis thaliana, suggesting that synthesis of 

bioactive VOCs is a strain-specific phenomenon. Acetoin-

forming enzymes have been identified earlier (Forlani et al., 

1999) [32] in certain crops like tobacco, carrot, maize and rice 

although their possible functions in plants were not properly 

established in that period. The VOCs produced by the 

rhizobacterial strains can act as signalling molecule to 

mediate plant–microbe interactions as volatiles produced by 

PGPR colonizing roots are generated at sufficient 

concentrations to trigger the plant responses (Ryu et al., 2003) 

[92]. Farmer (2001) [30] identified low-molecular weight plant 

volatiles such as terpenes, jasmonates and green leaf 

components as potent signal molecules for living organisms in 

different trophic levels.  

 

Growth enhancement 

Application of PGPR strains in agriculture is a potential issue 

in increasing international demand for food and improving 

environmental quality. PGPRs have been continuously used to 

enhance the plant growth, seed emergence and overall yield of 

crops in different agroecosystems (Minorsky, 2008) [75]. 

Dobbelaere et al. (2001) [23] assessed the inoculation effect of 

Azospirillum sp., on the growth of some agriculturally 

important plants and observed a significant increase in the dry 

weight of both the root system and aerial parts of the PGPR 

inoculated plants, resulting in better development and 

flowering. Esitken et al. (2003) [28] investigated the foliar 

applications of rhizobacterial microbes in mulberry and 

apricot and observed better development in total leaf area and 

chlorophyll production of the inoculated plants. Several 

PGPR strains such as Achromobacter xylosoxidans, Bacillus 

subtilis, B. licheniformis, B. pumilus, Brevibacterium 

halotolerans and Pseudomonas putida are identified as having 

crucial roles in cell elongation, increasing ACC deaminase 

activity and plant growth promotion (Sgroy et al., 2009) [98]. 

Total root length, surface area and volume in tomato and 

cucumber roots increased after inoculation with Pseudomonas 

fluorescens 92rk and P190r (Saravanakumar and Samiyappan, 

2007) [96]. Ahanthem and Jha (2007) [1] observed the response 

of rice crops, inoculated with arbuscular mycorrhizal (AM) 

fungi and PGPR in soils differing in nitrogen concentrations 

and recorded maximum shoot biomass, shoot phosphorus and 

nitrogen content in the rice plants inoculated with Azotobacter 

chroococcum in combination with Glomus sp. There are also 

reports concerning the root inoculation of apple trees with 

Bacillus M3 and Microbacterium FS01, resulting in 

significant tree growth and yield (Karlidag et al., 2007) [54]. 

The treatment of seeds or cuttings in some plants with non-

pathogenic bacteria, such as Agrobacterium, Alcaligenes, 

Bacillus, Pseudomonas, Streptomyces, etc., induces root 

formation (Esitken et al., 2003) [28]. This phenomenon might 

be attributed to the production of auxin, inhibition of ethylene 

synthesis or mineralization of nutrients by efficient PGPRs 

(Steenhoudt and Vanderleyden, 2000) [107]. Erturk et al. 

(2010) [27] examined the growth promoting effects of PGPRs 

on rooting and root growth of Actinidia deliciosa stem 

cuttings and recorded Bacillus RC23, Bacillus RC03, B. 

megaterium RC01, B. subtilis OSU142, B. simplex RC19, 

Comamonas acidovorans RC41 and Paenibacillus polymyxa 

RC05 as the successful PGPRs. Datta et al. (2011) [18] also 

observed the effect of three rhizobacteria (Bacillus C2, 

Bacillus C25, and Streptomyces C32) on the growth and yield 

of chilli under field conditions and found remarkable increase 

in growth characteristics such as total number of fruits, fruit 

weight, and yield. 

 

Maintenance of soil fertility and nutrient uptake 

PGPR can change the plant physiology and certain nutritional 

and physical properties of rhizospheric soil and indirectly 

influence on the colonization patterns of soil microorganisms 

in that particular region. Inoculation of rhizobacteria 

increased uptake of nutrient elements like Ca, K, Fe, Cu, Mn 

and Zn by plants through stimulation of proton pump ATPase 

(Mantelin and Touraine, 2004) [70]. Reports are available on 

the combinations of Bacillus and Microbacterium inoculants 

to improve the uptake of the mineral elements by crop plants 

(Karlidag et al., 2007) [54].  

This increase in nutrient uptake by plants might be explained 

through organic acid production by the plants and PGPRs, 

decreasing the soil pH in rhizosphere. Ample evidences 

(Forde, 2000; Glass et al., 2002) [31, 37] are there on the 

maintenance of soil fertility by the rhizobacterial isolates to 

increase the availability of nutrients for plants. Solubilization 

of unavailable forms of nutrients is one of the essential 

criteria in facilitating the transport of most of these nutrients 

(Glick, 1995) [41]. 

 

Indirect mechanisms 

PGPR as biocontrol agent 

Competition for nutrients, niche exclusion, parasitism, 

induced systemic resistance and production of anti-fungal 

metabolites (AFMs) (contributing to antibiosis) are the 

probable means responsible for biocontrol activity of PGPRs 

(Bloemberg and Lugtenberg, 2001; Podile and Kishore, 2006) 

[11, 85]. A variety of antibiotics have been identified, including 

compounds such as amphisin, 2,4-diacetylphloroglucinol 

(DAPG), oomycin A, phenazine, pyoluteorin, pyrrolnitrin, 

tensin, tropolone, and cyclic lipopeptides produced by 

pseudomonads (Loper and Gross, 2007) [66] and oligomycin A, 

kanosamine, zwittermicin, and xanthobaccin produced by 

Bacillus, Streptomyces and Stenotrophomonas sp. to prevent 

the proliferation of plant pathogens (generally fungi) 

(Compant et al., 2005) [16]. Some rhizobacteria interacts with 

the plant roots resulting to the phenomenon called induced 

systemic resistance (ISR) in plant i.e., resistance against some 

pathogenic bacteria, fungi and viruses (Lugtenberg and 

Kamilova, 2009) [67]. Among PGPRs, Pseudomonas is the 

best-characterized biocontrol agent at molecular level. 

Fluorescent pseudomonads are also known to suppress soil 
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born fungal pathogens by producing antifungal metabolites 

and by sequestering iron in rhizosphere through the release of 

iron-chelating siderophores, rendering it unavailable to other 

organisms (Dwivedi and Johri, 2003) [26]. In soils, antibiotic 

2,4-diacetylphloroglucinol (2,4- DAPG) producing 

Pseudomonas sp. was reported for biocontrol of disease in 

wheat caused by the fungus Gaeumanomyces graminis var. 

tritici (de Souza et al., 2003) [19]. Kidarsa et al. (2011) [57] 

generated information on the biosynthesis of pyoluteorin in 

Pseudomonas fluorescens Pf-5 and 2,4-diacetylphloroglucinol 

in P. fluorescens Q2-87. Ponmurugan et al. (2011) [86] 

screened some efficient Pseudomonas fluorescens strain for 

their plant growth promoting traits and antagonistic activities 

against tea pathogens such as Cercospora theae, Phomopsis 

theae and Poria hypolateritia. They also confirmed the 

presence of various antifungal metabolites in the bacteria 

which are involved in the growth inhibition of fungal tea 

pathogen. Application of Pseudomonas aeroginosa in 

combination with common medicinal plant Launaea 

nudicaulis also holds good promises for effective control of 

root infecting fungi of mungbean (Mansoor et al., 2007) [69].  

The strains of Bacillus subtilis are the most widely used 

PGPR due to their disease reducing and antibiotic producing 

capabilities (Kokalis-Burelle et al., 2006) [60]. Mishra et al. 

(2011) [76] studied that the application of culture filtrate of 

PGPR i.e. Bacillus subtilis MA-2 inhibited the growth of 

phtytopathogens infecting selected medicinal and aromatic 

plants, indicating that suppression was due to antifungal 

compounds in the filtrate. Bacillus amyloliquefaciens is 

known for lipopeptide and polyketide production for 

biological control activity and plant growth promotion 

activity against soil borne pathogens (Ongena and Jacques, 

2008) [81]. Azospirillum, Azotobacter, Bacillus, Enterobacter, 

Paenibacillus, Pseudomonas and Streptomyces are recorded 

as the potent genera of rhizobacteria acting against the 

pathogens like tomato mottle virus, tobacco necrosis virus, 

Rhizoctonia bataticola, Myzus persicae, Acyrthosiphon 

kondoi, Fusarium avenaceum etc. Besides, experiments on the 

dual effect of PGPR and AM fungi on Fusarium oxysporum f. 

sp., melongenae causing brinjal wilt has been done by Kalita 

et al. (2009) [53].  

Rhizobium meliloti have been reported to exclude the 

pathogen, Macrophomina phaseolina, causing charcoal rot of 

groundnut. Micromonospora sp., Streptomyces spp., 

Streptosporangium sp. and Thermobifida sp., have shown an 

enormous potential as biocontrol agents against different root 

fungal pathogens, indicating the tremendous potentiality of 

PGPRs as an alternative in controlling plant diseases in 

agriculture than that of conventional fungicides (Kumar et al., 

2009; Franco-Correa et al., 2010; Bhattacharyya and Jha, 

2012) [61, 33, 10]. 

Apart from the production of antibiotic, some rhizobacteria 

are also capable of producing volatile compound known as 

hydrogen cyanide (HCN) for biocontrol of black root rot of 

tobacco, caused by Thielaviopsis basicola (Sacherer et al., 

1994) [93]. Lanteigne et al. (2012) [63] also reported the 

production of DAPG and HCN by Pseudomonas contributing 

to the biological control of bacterial canker of tomato. 

 

Resistance to abiotic stress 

Abiotic stresses such as extremely high or low temperature, 

salinity, drought, acidic soils, and metal toxicity are 

considered to be the main sources of agricultural yield 

reduction (Nadeem et al., 2010) [77]. The use of PGPR as 

elicitors of mechanisms facilitating plant tolerance to abiotic 

stresses has emerged as a promising strategy to improve plant 

adaptation and resource use efficiency in hostile environments 

(Yang et al., 2009) [119]. ACC deaminase is produced by plant 

growth-promoting bacteria to effectively protect plants 

against a wide range of abiotic stresses such as drought, 

salinity, heat, flooding or water logging, and heavy metal 

stress (Glick, 2014) [40]. Rhizobacteria belonging to the genera 

Pseudomonas, Azospirillum, Bacillus, Burkholderia, 

Enterobacter and Kluyvera have been documented to have 

ACC deaminase activity (Saleem et al., 2007) [94]. 

Some plant growth promoting rhizobacteria produces exo-

polysaccharides which can bind cations, including Na+ 

suggesting a role in mitigation of salinity stress by reducing 

the content of Na+ available for plant uptake (Arora et al., 

2013) [6]. Gururani et al. (2013) [47] reported that some free-

living PGPR strains produce osmolytes which help plants to 

increase their osmotic potential within the cell thereby 

relieving the salinity stress. Marulanda et al. (2010) [72] 

reported that Bacillus megatertum strain inoculated into maize 

roots increased the ability of the root to absorb water under 

the salinity conditions. Similar behaviour was also found by 

Gond et al. (2015) [42] when Pantoea agglomerans was 

inoculated into the maize roots. Inoculation of jojoba and 

lettuce plant with Azospirillum brasilense was found to 

improve the salt tolerance (Gonzalez et al., 2015; Gabriela et 

al., 2015) [43, 35]. 

Sarma and Saikia (2014) [97] reported that Pseudomonas 

aeruginosa strain has improved the growth of Vigna radiata 

(mung beans) plants under drought conditions. PGPR are also 

reported as beneficial to the plants like tomatoes and peppers 

growing on water deficit soils for conferring resistance to 

water stress conditions (Aroca and Ruiz-Lozano, 2009) [4]. 

Seed treatment with salinity or drought tolerant isolates of 

Trichoderma harzianum reduced the severity of stress in 

wheat plants (Rawat et al., 2011; Shukla et al., 2015) [89, 104] 

under laboratory and greenhouse conditions, respectively.  

ACC deaminase activity by the plant growth-promoting 

rhizobacteria Burkholderia phytofirmans helped potato plants 

to maintain normal growth under heat stress (Saleem et al., 

2007) [94]. Pishchik et al. (2002) [84] reported that PGPR could 

attenuate the toxic effect of cadmium pollution on the barley 

yield, mostly because these bacteria could remove cadmium 

ions from the soil by binding mechanisms, thereby decreasing 

cadmium availability in the soil.  

 

Rhizoremediation 

The application of PGPRs in rhizoremediation technologies is 

now being considered as effective, since inoculation of PGPR 

strains could aid remarkable enhancement in plant growth and 

development on contaminated agroclimatic conditions. 

Rhizobacteria can directly assist rhizoremediation by 

producing IAA, biological nitrogen fixation, solubilizing P 

and secreting siderophores (Denton, 2007) [20]. PGPR strains, 

pseudomonads and Acinetobacter enhance uptake of Fe, Zn, 

Mg, Ca, K and P by crop plants (Esitken et al., 2006) [29]. 

Subrahmanyam and Archana (2011) [108] found Enterobacter 

sp. C1D as multi-metal resistant in nature and it had clear 

positive measurable effects on root length, shoot length, fresh 

shoot weight, fresh root weight and chlorophyll content of the 

Vigna radiata GM4 in Cr6+ amended soils (up to 350 mg kg-

1). Elevated IAA production probably enables Enterobacter 

sp. C1D to enhance plant growth in Cr6+ contaminated soils. 

PGPR along with AM fungi are now being utilized in the 

nutrient poor agricultural soils to increase the solubility of 

heavy metals and thereby increasing the chances of success in 
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rhizoremediation. Besides, investigations on the application of 

PGPR strains in decreasing the bioavailability of toxicity 

resulting in better growth and development in heavy metal 

contaminated soils through recycling of nutrients, maintaining 

soil structure, detoxifying chemicals and controlling pests are 

also well studied (Denton, 2007) [20]. 

 

Commercial products developed using different PGPR 

strains 

Numerous work done showed different stages in the process 

of commercialization include isolation of antagonist strains, 

screening, fermentation methods, mass production, 

formulation viability, toxicology, industrial linkages, quality 

control and field efficacy (Nandakumar et al., 2001) [79]. 

Moreover, commercial success of PGPR strains requires 

economical and viable market demand, consistent and broad-

spectrum action, safety and stability, longer shelf life, low 

capital costs and easy availability of career materials. Chet 

and Chernin (2002) [15] and Glick et al. (1999) [39] had 

formulated some of the important PGPR strains along with 

their commercial products, which are listed in Table 4.  

 
Table 4: Commercial products developed using different PGPR strains 

 

PGPR Products Intended crop 

Agrobacterium radiobacter 

Azospirillum brasilense 

Diegall, Galltrol-A, Nogall, Norbac 84 C 

Azo-Green 
Fruit, nut, ornamental nursery stock and trees 

Bacillus subtilis GB03 Kodiak, Kodiak HB, Epic, System 3, Concentrate and Quantum 4000 Turf and forage crops Cotton and legumes 

Bacillus subtilis GB03 Campanion  

B. subtilis and Bio Yield 
Horticultural crops and turf 

Tomato, cucumber, pepper and tobacco 

B.amyloliquefaciens Intercept Maize, vegetables, cotton 

Psuedomonas cepacia Pix plus Cotton 

Bacillus cereus Blue Circle, Deny, Intercept Alfalfa, barley, beans, clover, cotton, maize, 

Burlkholderia cepacia Blight Ban A506, Conquer, Victus peas, sorghum and wheat 

Psuedomonas fluorescens  Almond, apple, cherry, mushroom, potato 

P. chlororaphis AtEze Ornamental and vegetable crops 

P. syringae Bio-save 10, 11, 100, 110, 1000 Strawberry and tomato, citrus and pome fruit 

Source: Glick et al. (1999) [39]; Chet and Chernin (2002) [15] 

 

Conclusion 

Plant growth promoting rhizobacteria, having multiple 

activities in terms of biofertilization, biocontrol, and 

bioremediation, all of which exert a positive influence on crop 

productivity and ecosystem functioning, encouragement 

should be given to its implementation in agriculture. The of 

stable formulations of PGPRs should be implemented in 

agriculture by replacing the use of chemical fertilizers, 

pesticides and artificial growth regulators which have 

numerous side-effects to sustainable agriculture. PGPR 

promote plant growth not only by supplying nutrients to the 

plant, but also by producing phytohormones, inducing stress 

resistance, or preventing pathogen-induced plant diseases. 

Thus, the development of the biofertilizer market and the 

promotion of bacterial inoculations in the field is an 

environmentally friendly way to meet the worldwide need to 

raise crops yields. 
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