

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(3): 2236-2239 Received: 28-03-2019 Accepted: 30-04-2019

GD Umadevi

Department of Agronomy, SV Agricultural College, Tirupati, Andhra Pradesh, India

V Sumathi

Department of Agronomy, SV Agricultural College, Tirupati, Andhra Pradesh, India

A Pratap Kumar Reddy

Department of Agronomy, SV Agricultural College, Tirupati, Andhra Pradesh, India

P Sudhakar

Department of Agronomy, SV Agricultural College, Tirupati, Andhra Pradesh, India

K Lavanya Kumari

Department of Agronomy, SV Agricultural College, Tirupati, Andhra Pradesh, India

Correspondence GD Umadevi Department of Agronomy, SV Agricultural College, Tirupati, Andhra Pradesh, India

Effect of organic manures and phosphorus on cowpea and their residual effect on succeeding little millet

GD Umadevi, V Sumathi, A Pratap Kumar Reddy, P Sudhakar and K Lavanya Kumari

Abstract

Field experiments were conducted during 2017-18 to 2018-19 at Tirupati (AP) to evaluate the direct and residual effects of organic and inorganic sources of nutrients on yield of cowpea-little millet cropping sequence. Three levels of organic manures (no organic manure, FYM @ 5 tonnes ha⁻¹ and poultry manure @2 tonnes ha⁻¹) and 3 phosphorus levels (0, 40 and 60 kg P₂O₅ ha⁻¹) applied to cowpea and 3 graded levels of nitrogen *viz.*, 0, 10 and 20 kg ha⁻¹ applied to succeeding little millet. Yield attributes and yield of cowpea varied with manures and phosphorus levels. Poultry manure @ 2 tonnes ha⁻¹ resulted in higher number of pods per plant, seeds per pod, pod and haulm yields which was on par with application of FYM @ 5 tonnes ha⁻¹. Among the phosphorus levels, application of 60 kg P₂O₅ ha⁻¹ resulted in higher pod yield. Yield attributes and yield of little millet were influenced by the residual effect of organic manures and phosphorus applied to cowpea, as well as nitrogen levels applied to little millet, where 20 kg N ha⁻¹ resulted in significantly higher values of yield attributes and yield compared to 10 kg N ha⁻¹ and control. This study concluded that the application of poultry manure to preceding cowpea showed residual effect by saving nitrogen dose to succeeding little millet.

Keywords: FYM, poultry manure, cowpea, phosphorus, residual effect, direct effect, little millet

Introduction

Inclusion of legumes with the use of organic and inorganic sources of nutrients in cropping sequence results in improvement of base as well as succeeding crop to achieve food, nutritional security, increased productivity, profitability and sustainability.

Cowpea [*Vigna unguiculata* (L.) Walp] is of immense importance, as it is a multipurpose grain legume extensively cultivated in arid and semiarid tropics. The cowpea is used as grain, green pods and fodder. Cowpea is grown as a catch crop, weed smothering crop, intercrop, mixed crop and green manure crop. It has ability to fix atmospheric nitrogen in soil at the rate of 56 kg per hectare in association with symbiotic bacteria under favourable conditions (Yadav, 1986)^[10].

The little millet is one among the six small millets grown in most of the regions of scanty and eratic rainfall on poor and marginal soils. Cultivation of this crop is mostly confined to hilly tract and poor tribal community of the country. The demand for little millet is increasing now-a-day due to its high nutritional profile with low glycemic index particularly by the people suffering from diabetes. It has good nutritive value as it is rich in carbohydrates (66.3%), protein (7.5 to 13.8%), fat (3.54%) crude fiber (5.73%), iron (1.38mg 100g⁻¹) and calcium (21.21mg 100g⁻¹) (Kulkarni *et al.*, 1992)^[5].

Organic manures although, not useful as sole sources of nutrients, are however, good complementary sources with inorganic fertilizers (Chaudhary *et al.*, 2004) ^[2]. Phosphorus is the second most critical plant nutrient over all, but for pulses it assumes primary importance owing to its important role in root proliferation and there by atmospheric nitrogen fixation. The management of organic manures and phosphorus is considered for cropping system as a whole rather than for individual crop because they cannot be fully utilized by the crop to which these are added and a substantial amount is left into the soil for subsequent crops and their residual effects thus become an important dimension for their management (Ali and Mishra, 2000) ^[1]. As information on these aspects is lacking in cowpea-little millet cropping sequence. The present investigation was carried out.

Materials and Methods

The field experiments were conducted during two consecutive years (2017-2018 and 2018-19) at S.V. Agricultural college farm, Tirupati of Andhra Pradesh. The soil of the experimental

field was sandy loam in texture, low organic carbon (0.39 %) and available N (168.5 kg ha⁻¹) medium in P₂O₅ (18.8 kg ha⁻¹) ¹), available K₂O (161.3 kg ha⁻¹) and neutral in reaction (6.94). The experiment was laid out in split-split design with three replications at same site during both the years. The treatments consisted of three organic manures, viz., control, (M_1) FYM @ 5 t ha⁻¹ (M_2) and poultry manure @ 2 t ha⁻¹ (M_3) as main plot treatments and three phosphorus levels, viz., 0 (P₁), 40 kg P₂O₅ ha⁻¹ (P₂) and 60 kg P₂O₅ ha⁻¹ as subplot treatments imposed to cowpea crop during kharif season. Three nitrogen levels 0 kg ha⁻¹ (S_1), 10 kg ha⁻¹ (S_2) and 20 kg ha^{-1} (S₃) as sub- sub plot treatments imposed to little millet during rabi season. As per treatments, FYM and poultry manure were incorporated 15 days before sowing and phosphorus was applied at basal to cowpea during both the years. Cowpea variety -TPTC-29 was sown in rows 30 cm apart using a seed rate of 20 kg ha⁻¹. The green pods of cowpea were picked in three spells and haulms were incorporated into the soil thoroughly for full decomposition followed by sowing of little millet. As per treatment half of the nitrogen dose was applied as basal and remaining half was applied after 30 DAS. Little millet variety 'OLM-203' was raised in rows 20 cm apart using a seed rate of 10 kg ha⁻¹.

Results and Discussion

Cowpea

The yield attributes and yield of cowpea was higher with incorporation of poultry manure, however, it was on par with those resulted due to FYM incorporation and both were significantly superior to no manure application during both the years of study (Table 1). This might be due to the fact that organic manures supplied balanced nutrition to the crop, improved soil condition and there by resulting in better growth and development leading to higher yield attributes and yield. The same was obvious through the findings of Yadav *et al.* (2007)^[9], Rao *et al.* (2013)^[7] and Singh *et al.* (2015)^[8].

Number of pods plant⁻¹ and seeds per pod⁻¹ showed increased trend with application of increased P levels. Similarly, successive increase in P levels had positive effect on pod as well as haulm yield over their preceding level. Application of 60 kg P₂O₅ ha⁻¹ recorded higher pod yield and haulm yield which was comparable with that resulted with 40 kg P_2O_5 ha⁻¹ and both were significantly superior over control (Table 1). Application of phosphorus might have resulted in increased the energy transfer as phosphorus is constituent of many enzymes and their remobilization to reproductive parts of the plants. Hence, resulted in increased flowering, fruiting and seed formation might attributed to more pod yield. These results are in conformity with the findings of Kumawat, (2006) ^[6]. Quantity of cowpea haulms incorporated was ranged from 9600 to 13162 kg ha⁻¹ and 8414 to 11137 kg ha⁻¹ during 2017 and 2018 on fresh wait bases, due to variation in growth of plants with varied treatments. The nitrogen content on dry weight bases ranged from 2.07 to 2.37 and 2.08 to 2.39 during 2017 and 2018. The residual effect of incorporated haulms reflected on succeeding little millet growth and yield.

Table 1: Yield attributes and yield of cowpea as influenced by organic manures and phosphorus levels

Tuesday and a	No. of pods plant ⁻¹		No. of se	No. of seeds pod ⁻¹		yield (kg ha ⁻¹)	Haulm yield (kg ha ⁻¹)					
1 reatments	2017	2018	2017	2018	2017	2018	2017	2018				
Organic manures												
M_1	5.01	4.98	6.16	7.03	1771	1916	9600	8414				
M_2	6.79	6.81	7.89	8.86	2607	2754	12703	10794				
M3	7.26	7.30	7.93	9.01	2719	2872	13162	11137				
SEM+	0.157	0.224	0.156	0.245	50.3	66.3	118.9	110.0				
CD (P=0.05)	0.63	0.90	0.62	0.98	203	267	479	443				
Phosphorus levels												
P1	5.42	5.12	6.09	6.94	1964	2094	10061	8053				
P2	6.56	6.72	7.77	8.73	2492	2650	12571	10954				
P3	7.08	7.25	8.12	9.21	2641	2798	12833	11339				
SEM. <u>+</u>	0.244	0.237	0.134	0.196	70.3	71.0	146.6	158.2				
CD (P=0.05)	0.75	0.73	0.41	0.61	219	221	456	492				
	Interaction											
				P at I	M							
SEM <u>+</u>	0.272	0.388	0.270	0.425	87.2	114.8	205.9	190.5				
CD (P=0.05)	NS	NS	NS	NS	NS	NS	NS	NS				
				M at	Р							
SEM+	0.379	0.403	0.245	0.371	111.4	120.3	239.0	249.3				
CD (P=0.05)	NS	NS	NS	NS	NS	NS	NS	NS				

Little millet

The yield attributes viz., number of panicles m^{-2} , length of panicle, weight of panicle, grain weight of panicle and yield of little millet was higher due to residual effect of poultry manure followed by FYM incorporation during both the years (Table 2). Similarly, residual effect of 60 kg P₂O₅ ha⁻¹ reflected on enhanced yield attributes and yield of succeeding little millet. However it was on par with those resulted with 40 kg P₂O₅ ha⁻¹.

In addition to the residual effect of manures reflected on yield of little millet, direct application of nitrogen also altered the yield attributes and yield. Significantly, higher grain yield was recorded with 20 kg N ha⁻¹ (Table 3). This might be attributed to better availability and uptake of nitrogen which in turn lead to efficient metabolism and higher biomass accrual and efficient translocation of photosynthetic from source to sink. The increase in sink capacity resulted in improved yield attributes and consequently enhanced the grain yield. The above results are in conformity with the findings of Kalaghatagi *et al.*, 2000^[4] and Hasan *et al.*, 2013^[3].

Regarding the interaction effect, the grain yield of little millet was significant with combined effect of residual manures and direct nitrogen doses, where, the poultry manure residual effect along with 20 kg N ha⁻¹ resulted in highest grain yield of little millet (Table 4).

With respect to the economics, the gross, net returns and returns per rupee invested followed the similar trend of effect as that of grain yield of little millet, where numerically higher income was reflected with poultry manure application in combination with 60 kg P_2O_5 to cowpea and their residual effect with 20 kg N ha⁻¹ to little millet (Table 5). Interaction effect of manorial residually with 20 kg N was

progressively increased with poultry manure followed by FYM residually. The interaction data with respect to returns per rupee invested clearly indicated that poultry manure saves the nitrogen to succeeding little millet (Table 6).

Table 2: Yield attributes of little millet as influenced by nitrogen and residual effect of manures and phosphorus applied to preceding cowpea

Treatmonte	Number of panicles m ⁻²		Length of panicle (cm)		Weight of panicle (g)		Grain weig	ht panicle ⁻¹	1000 grain weight (g)				
Treatments	2017-18	2018-19	2017-18	2018-19	2017-18	2018-19	2017-18	2018-19	2017-18	2018-19			
Organic manures													
M1	218	213	24.0	21.7	2.62	2.66	1.92	2.03	2.50	2.45			
M2	244	238	24.8	23.6	2.95	2.89	2.25	2.10	2.53	2.44			
M3	245	239	25.3	24.1	2.98	2.92	2.28	2.14	2.57	2.49			
SEM ±	0.90	0.60	0.35	0.19	0.014	0.013	0.014	0.013	0.014	0.010			
CD (P = 0.05)	3.5	2.3	NS	0.7	0.05	0.05	0.05	0.05	NS	NS			
Phosphorus level													
P1	231	224	24.3	22.5	2.84	2.81	2.14	2.07	2.50	2.47			
P ₂	237	231	24.8	23.5	2.85	2.82	2.15	2.10	2.55	2.45			
P3	240	234	24.9	23.4	2.86	2.83	2.16	2.11	2.55	2.47			
SEM ±	1.54	1.44	0.36	0.30	0.014	0.013	0.014	0.013	0.021	0.008			
CD (P = 0.05)	4.7	4.4	NS	NS	NS	NS	NS	NS	NS	NS			
				Nitro	ogen levels								
S 1	206	200	23.1	21.8	2.72	2.69	2.02	1.95	2.53	2.43			
S_2	235	229	25.2	23.2	2.84	2.82	2.14	2.09	2.54	2.45			
S ₃	266	260	25.9	24.4	2.99	2.96	2.29	2.23	2.53	2.51			
SEM ±	2.19	1.80	0.36	0.31	0.014	0.013	0.014	0.013	0.019	0.009			
CD (P = 0.05)	6.3	5.1	1.0	0.9	0.03	0.03	0.03	0.03	NS	0.02			

 Table 3: Grain yield (kg ha⁻¹) of little millet as influenced by nitrogen and residual effect of manures and phosphorus applied to preceding cowpea

		2017-18						2018-19					
		S ₁	S_2	S_3	Mean for M	Mean for P	S_1	S_2	S ₃	Mean for M	Mean for P		
	P ₁	1036	1173	1460			1002	1129	1412	1233			
M_1	P ₂	1096	1240	1536	1283	1376	1046	1186	1476		1317		
	P3	1116	1320	1574			1066	1266	1514				
M ₂	P ₁	1260	1444	1651	1474	1426	1179	1363	1560	1392	1364		
	P ₂	1233	1471	1667			1153	1391	1581				
	P3	1233	1558	1754			1153	1478	1667				
	P ₁	1164	1468	1729			1123	1427	1659		1408		
M ₃	P ₂	1269	1595	1725	1514	1470	1219	1545	1675	1464			
	P ₃	1302	1617	1757			1252	1567	1711]			
Mean for S		1190	1432	1650			1133	1373	1584				

	20	17-18	2018-19					
	SEM ±	CD (P = 0.05)	SEM ±	CD (P = 0.05)				
М	23.21	90.6	23.45	91.5				
Р	16.05	49.4	14.96	46.1				
S	13.47	38.6	12.79	36.7				
MXP	27.81	NS	25.91	NS				
MXS	23.34	66.9	22.16	63.5				
PXS	23.34	NS	22.16	NS				
MXPXS	40.43	NS	38.39	NS				

Table 4: Interaction effect of organic manures and nitrogen levels on grain yield (kg ha⁻¹) of little millet

		2017-18	8		2018-19						
	S_1	S2	S3	Mean of M		S 1	S2	S3	Mean of M		
M ₁	1083	1244	1523	1283	M_1	1038	1194	1467	1233		
M ₂	1242	1491	1690	1474	M ₂	1161	1411	1603	1392		
M ₃	1245	1560	1737	1514	M3	1198	1513	1682	1464		
Mean of S	1190	1432	1650		Mean of S	1133	1373	1584			
MXS -	SEM ±	CD(P = 0.05)			MVS	SEM ±	CD (P = 0.05)				
	23.34	6	6.9		IVIAS	22.16	63.5				

 Table 5: Yield and economics of little millet as influenced by nitrogen and residual effect of manures and phosphorus applied to preceding cowpea

Treatments	Straw yield (kg ha ⁻¹)		Gross returns (`ha ⁻¹)		Net returns (`ha ⁻¹)		Returns per rupee invested				
	2017-18	2018-19	2017-18	2018-19	2017-18	2018-19	2017-18	2018-19			
Organic manures											
M 1	1568	1532	26458	25435	14677	13654	2.24	2.15			
M ₂	1712	1662	30353	28671	18572	16890	2.57	2.43			
M 3	1815	1763	31195	30174	19414	18393	2.64	2.55			
$SEM \pm$	26.7	27.0	477.4	482.3	477.4	482.3	0.041	0.041			
CD (P = 0.05)	104	105	1863	1883	1863	1883	0.16	0.16			
				Phosphoru	ıs level						
P 1	1633	1598	28347	27151	16566	15370	2.40	2.30			
P ₂	1709	1657	29378	28109	17597	16328	2.49	2.38			
P ₃	1752	1701	30281	29020	18500	17239	2.56	2.46			
SEM ±	16.4	16.8	329.4	307.6	329.4	307.6	0.028	0.026			
CD (P = 0.05)	50	51	1014	947	1014	947	0.08	0.08			
				Nitrogen	levels						
S_1	1465	1422	24539	23371	12889	11721	2.10	2.00			
S_2	1705	1662	29495	28289	17714	16508	2.50	2.40			
S ₃	1925	1873	33971	32620	22059	20708	2.85	2.73			
SEM ±	13.8	14.2	276.4	263.0	276.4	263.0	0.023	0.022			
CD(P = 0.05)	39	41	793	754	793	754	0.06	0.06			

Table 6: Interaction effect of organic manures and nitrogen levels on returns per rupee invested of little millet

2	2018-19								
	S1	S2	S3	Mean of M		S1	S2	S3	Mean of M
M1	1.91	2.17	2.63	2.24	M1	1.83	2.09	2.53	2.15
M2	2.19	2.60	2.92	2.57	M2	2.05	2.47	2.77	2.43
M3	2.20	2.72	3.00	2.64	M3	2.12	2.64	2.90	2.55
Mean of S	2.10	2.50	2.85		Mean of S	2.00	2.40	2.73	
MVS	$SEM \pm$	CD (P = 0.05)			MXC	$SEM \ \pm$		CD	(P = 0.05)
MAS	0.041	0.11			MAS	0.039	0.11		0.11

Conclusion

The experimental results concluded that in the areas where cowpea little millet crop sequence is fallowed, manures application to preceding crop preferably poultry manure conserve the nitrogen dose to succeeding little millet crop.

References

- Ali M, Mishra JP. Nutrient management in pulses and pulse based cropping systems. Fertiliser News. 2000; 45(4):57-69.
- 2. Chaudhary DR, Bhandary SC, Shukla LM. Role of vermicompost in sustainable agriculture. A review. Agricultural Review. 2004: 25(1):29-39.
- 3. Hasan MS, Rashid MH, Rahman QA, Almamun MH. Influence of seed rates and levels of NPK fertilizers on dry matter accumulation and yield performance of foxtail millet *Setaria italica* L. Beauv. Bangladesh Journal of Agricultural Research. 2013; 38(4):689-704.
- 4. Kalaghatagi S, Jirali DI, Walia SY, Nagod MS. Response of foxtail millet *Setaria italica* to nitrogen and phosphorous under rainfed conditions of northern dry zone of Karnataka. Annals of Arid zone. 2000; 39(2):169-171.
- Kulkarni LR, Naik RK, Katarki PA. Chemical composition of minor millet. Karnataka Journal of Agricultural Sciences. Dharwad. 1992; 5(3):255-256.
- 6. Kumawat S. Response of mothbeen *Vigna acontifolia Marechal* to phosphorus and molybdenum. M.Sc. Ag. Thesis, Rajasthan Agricultural University, Bikaner, 2006.
- 7. Rao KT, Rao AU, Reddy DS. Residual effect of organic manures on growth, yield and economics of green gram

in maize-Sunflower-green gram system. International Journal of Agricultural Sciences. 2013; 9(1):275-279.

- Singh RV, Tripathi SK, Singh RP. Effect of integrated nutrient management on productivity, nutrient uptake and economics of green gram *Vigna radiata* L. in custard apple-based agri-horti system under rain fed condition. Current Advances in Agricultural Sciences. 2015; 7(1):76-78.
- 9. Yadav AK, Varghese K, Abraham T. Response of bio fertilizer, poultry manure and different levels of phosphorus on nodulation and yield of green gram *Vigna radiata* L. CV. K-851. Agricultural Science Digest. 2007; 27(3):213-215.
- 10. Yadav VPS. Future challenges of agriculture in India. Indian Agriculture. 1986; 3:1-20.