

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 **P-ISSN:** 2349-8234 JPP 2019; SP2: 427-431

Manisankar G

PG scholar, Department of Agronomy, Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu agricultural university, Trichy-27, Tamil Nadu, India

Ramesh T

Assistant Professor, Department of Agronomy, Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University, Trichy-27, Tamil Nadu, India

Correspondence Manisankar G PG scholar, Department of Agronomy, Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu

agricultural university, Trichy-27, Tamil Nadu, India

Response of weeds under elevated CO₂ and temperature: A review

Manisankar G and Ramesh T

Abstract

Climate change refers to a statistically significant variation in either the mean state of the climate or in its variability, persisting for an extended period (typically decades or longer). Under changing climate, high temperature and elevated CO₂ are predicted to increase in frequency, causing serious challenges to sustain global food security. Among the 86-plant species which supply most of the world's food, only five are C₄ species. Among 18 most troublesome weeds in the world, 14 are C₄ species. Most of troublesome weeds species are C₄, while most major crops areC₃photosynthetic pathway. Various studies revealed that both crops and weeds respond to changing climate scenario. Weeds comes under C₃ pathway may dominate under elevated CO₂ conditions, whereas in elevated temperature, C₄ weeds may dominate. The interactive effect of elevated CO₂ and temperature showed that C₄ weeds dominate over C₃ weeds. Crop-weed competition was low at elevated CO₂ whereas high under elevated temperature. The interactive effect of elevated CO₂ and temperature on crop-weed competition was high. Hence, weed management is considered as a major threat to future agriculture.

Keywords: Climate change, Elevated CO₂, Elevated temperature, Crop weed competition, Weed invasion

1. Introduction

Climatic changes and increasing climatic variability are likely to enhance the problem of future food security by exerting pressure on agriculture. For the past few decades, the gaseous composition of earth's atmosphere is undergoing a considerable change, mainly through increased emissions from energy, industry and agriculture sectors, widespread deforestation as well as fast changes in land use and land management practices. Weeds are usually known as plants that interfere in growth, yield and production of cropping systems. Weeds, due to their competition with crops for soil and water resources, cause reduction of yield, quality and land value. Weeds are the major pests that cause largest yield reductions (Dass *et al.*, 2017) ^[9]. Weeds causes 37% of total losses in agricultural production against 29% losses caused by insects, 22% by diseases and 12% by other pests (Yaduraju, 2007) ^[30]. Furthermore, weeds could be act as a host for pest and diseases and increase their control complexities.

Climate change also influences weeds indirectly by enforcing adaptations of farming methods such as choice of crop, sowing time, harvesting date, and other agronomical practices to these alterations (Fleming and Vanclay, 2010) ^[11]. Climate change may bring changes in weed population and their phenology. Many weed species may expand their range and spread to new areas. One of the important agricultural aspects which influenced from CO₂ elevation is weed-crop competition. Most `troublesome' weedy species are C₄ plants, while most major crops are C₃ plants (Patterson, 1995) ^[24]. For example, among the 18 most troublesome weeds in the world (Holm *et al.*, 1977) ^[13], 14 are C₄, whereas of the 86-plant species which supply most of the world's food, only five are C₄ species (Patterson, 1995) ^[24].Under changing climate, high temperature and elevated CO₂are expected to increase in frequency, causing serious challenges global food security. The effect of increased levels of CO₂ on plants has been intensively studied (Rogers *et al.*, 2008) ^[26]. Fewer studies have been done on the effect of climate change on weeds in India. Hence, the aim of this review paper is to address the response of weeds under changing climatic scenario.

2. Major weed flora in India

Major weed species prevalent in India are *Phalaris minor, Avenafatua, Chenopodium album, Convolvulus arvensis, Cirsium arvense* and *Plantagolanceolata* having C_3 photosynthetic pathways. Weed species like, *Amaranthus viridis, Dactylocteniumaegyptium, Echinochioacrusgalli, Leptochloachinensis, Trianthemaportulacastrum, Cynodondactylon* and *Cyperus species* are under C_4 photosynthetic pathways and the list of major C_3 and C_4 weeds, their common name, family and characteristics are presented in table 1 (Jinger *et al.*, 2017)^[16].

3. Climate change scenario in global and India

Current global climate models predict a mean increase in global temperature is 1.0 - 3.7 °C at the end of the 21^{st} century (Stocker *et al.*, 2013) ^[28]. Around 9 out of the 10 warmest years after 1880 have occurred during the last decade (2000 – 2010), negatively affected global food production (Mittler *et al.*, 2012) ^[19]. For the past 15 years, 13 years recorded as a warmest year (2002-2017).Annual mean temperature in India has increased by about 1.2 °C since the beginning of the 20th century. The highest annual mean temperature25.12 °C in India was registered during 2016. The winter of 2016-17, the mean temperature was 2.95 °C higher than the baseline-the warmest in recorded history. The CO₂ concentration increment was 2ppm/year during past three years (Nalli *et al.*, 2018) ^[22]. Steady increase in atmospheric CO₂ concentration

is noted and predicted to reach 700 pp mat the end of the 21st century.

4. Impact of climate change on weeds

The impacts of climate change on single species and ecosystems are likely to be complex. Weed populations include individuals with the ability to adapt and flourish in different types of habitats. Any factor which increases environmental stress on crops may make them more vulnerable to attack by insects and plant pathogens and less competitive with weeds. The physiological plasticity of weeds and their greater intra specific genetic variation compared with most crops could provide weeds with a competitive advantage in a changing environment events such as cyclones, flooding, drought and fires (from high temperature) will become more common and weeds will be the first to gain a stronghold after these events (Singh *et al.*, 2011) ^[27].

Table 1: Major weed species under C3 and C4 photosynthetic pathway in India

Major weeds	Common name	Family	Characteristics		
Major weeds		weeds	Characteristics		
Agropyronrepens Quack grass Poaceae Perennial grass herb					
Agropyronrepens	Mexican poppy	Papaveraceae	Annual broad-leaved herb		
0	Billgoatweed		Annual broad-leaved herb		
Ageratum conyzoides	0	Asteraceae			
Avenafatua	Spring wild oat	Poaceae	Annual grass herb		
Abutilon theophrasti	Velvet leaf	Malvaceae	Annual broad-leaved herb		
Ammaniabaccifera	Red stem	Lythraceae	Annual broad-leaved herb		
Commelinabenghalensis	Day flower	Commelinaceae	broad-leaved grass herb		
Chenopodium album	Common lambsquaters	Chenopodiaceae	Annual broad-leaved herb		
Cassia obtusifolia	Sicklepod	Fabaceae	Annual broad-leaved herb		
Cirsium arvense	Canada thistle	Asteraceae	Perennial broad-leaved herb		
Convolvulus arvensis	Field bind weed	Convolvulaceae	Perennial broad-leaved twining stem		
Datura stramonium	Thorn apple	Solanaceae	Annual broad-leaved under-shrub		
Ecliptaprostrata	False daisy	Asteraceae	Annual broad-leaved herb		
Eichhorniacrassipes	Water hyacinth	Pontederiaceae	Aquatic broad-leaved grass herb		
Loliumperene	Rye grass	Poaceae	Perennial grass herb		
Plantagolanceolata	Buckhorn	Plantaginaceae	Annual broad-leaved grass herb		
Phalaris minor	Little seed canary grass	Poaceae	Annual grass herb		
Poaannua	Blue grass	Poaceae	Annual grass herb		
Rumexacetosella	Red sorrel	Polygonaceae	Annual broad-leaved herb		
Striga asiatica	Witch weed	Scrophulariaceae	Parasitic weed herb		
Solanum nigrum	Black nightshade	Solanaceae	Annual broad-leaved herb		
C4 weeds					
Andropogonvirginicus	Broom sedge	Poaceae	Monocot grass weed		
Amaranthus retroflexus	Redroot pig weed	Amaranthaceae	Annual broad-leaved herb		
Atriplex spongiosa	Saltbush	Amaranthaceae	Annual herb/sub-shrub		
Boerhaviadiffusa	Hogweed	Nyctaginaceae	Perennial broad-leaved herb		
Cyperus rotundus	Purple nutsedge	Cyperaceae	Perennial herb		
Cyperus iria	Flatsedge	Cyperaceae	Annual herb		
Cynodondactylon	Bermuda grass	Poaceae	Perennial herb		
Dactylocteniumaegyptium	Crowfoot grass	Poaceae	Annual herb, creeping/erect branches		
Digitariaciliaris	Large crabgrass	Poaceae	Annual spreading grass herb		
Eleusineindica	Goose grass	Poaceae	Annual erect tufted grass		
Euphorbia hirta	Garden spurge	Euphorbiaceae	Annual herb, deep rooted		
Echinochioacrusgalli	Barnyard grass	Poaceae	Annual grass herb		
Imperatacylindrica	Congo grass	Poaceae	Perennial grass		
Leptochloachinensis	Sprangletop	Poaceae	Annual grass herb		
Monochoria vaginalis	Monochoria	Pontederiaceae	Annual aquatic broad-leaved grass		
Portulaca oleracea	Common purslane	Portulacaceae	Annual herb		
Rottboelliacochinchinensis	Itch grass	Poaceae	Annual grass herb		
glauca Setaria	Yellow foxtail	Poaceae	Annual grass herb		
Saccharum spontanium	Tiger grass	Poaceae	Perennial grass/under-shrub		
		Poaceae	Perennial grass/under-snrub Perennial grass		
Sorghum halepense	Jhonson grass		<u> </u>		
Trianthemaportulacastrum	Horse purslane	Aizoaceae	Annual broad-leaved herb		

5. Elevated CO₂ concentration

 CO_2 is the sole source of carbon for photosynthesis of crop plants. The United Nations Intergovernmental Panel on Climate Change (UN-IPCC) predicts that atmospheric CO_2 concentration could exceed 700 ppm by the end of 21st century (Houghton *et al.*, 1996) ^[14]. Due to the ongoing increases in atmospheric CO_2 , there would be stimulation in leaf photosynthesis in C₃plants by increasing the CO_2 level in the leaf interior and by decreasing the loss of CO_2 by photorespiration. The C₄ plants, however, have internal biochemical pump for concentrating the CO_2 at carboxylation site that reduces the oxygenase component of the rubisco, thereby eliminating the carbon loss by photorespiration (Naidu, 2013) ^[20].

The current atmospheric CO_2 concentration is sub-optimal for photosynthesis in C_3 plants. However, plants with C_4 photosynthetic pathway have an internal mechanism for concentrating CO₂ at the site of fixation (Acock, 1990)^[1]. Photorespiration is one reason why C₃ crops exhibit lower rates of net photosynthesis than C₄ crops, at ambient CO₂. However, due to the same reason, C₃ species will respond more favourably to elevated CO₂ levels, because CO₂ tends to suppress photorespiration. In C₄plants, the internal mesophyll cell arrangements are different to those of C₃ plants, making efficient transfer of CO₂ possible, and this minimizes photorespiration and favours photosynthesis (Drake et al., 1997) [10]. Plants with C₃ photosynthetic pathways are expected to benefit more than C4 from CO2 enrichment (Patterson and Flint, 1980)^[25]. Hence, many weeds species are under C₄photosynthetic pathway, they showed smaller response to elevated CO₂ relative to crops which are mostly C₃.

The crops come under C₃ pathway such as rice and wheat, response to elevated CO₂ may have positive effects on crop competitiveness with C₄ weeds (Yin and Struik, 2008; Fuhrer, 2003) ^[31, 12]. Elevated CO₂influences some physiological changes in plants like higher photosynthesis, increased leaf area and mass per unit area, increased tillering, high water use efficiency, advanced flowering, increase number of grains/ spiklets, grain weight, grain yield and harvest index(Jagadish et al., 2011) [15]. It had been reported that doubling ambient CO₂ levels stimulated biomass yield of C₃ plants by 40% and C₄ plants by 11% (Kimball, 1983) ^[17]. The wild oat grown at 480 ppm CO₂ produced 44% more seed than those grown at 357 ppm (O'Donnell and Adkins, 2001) ^[23]. Ziska et al. (2010) ^[35] found that rice biomass increased with increase in CO₂ from 300 to 400 ppm but did not increase further with increase in CO₂ to 500 ppm. Elevated CO₂ has been shown to increase growth and biomass accumulation of the C4 weed Amaranthus viridis (Naidu, 2013) [20]. Under present CO2 levels, C₄ plants are more photosynthetically efficient than C₃ plants. It is also possible that in a CO₂ enriched atmosphere, important C4 crops may become more vulnerable to increased competition from C₃weeds (Jinger et al., 2017)^[16].

6. Elevated temperature

Duration of plants in particular area is determined by prevailing temperature. Climate change projections suggested that 2.4-6.4°C increase of global average temperature by the end of 21st century (Metz *et al.*, 2007) ^[18]. Changes in temperature generally affect the length of growing period in plants. Elevated temperature influences some physiological changes in plants like damage to photosynthetic apparatus, higher oxidative stress and membrane damage, shorter

vegetative phase, reduced tillering, inadequate assimilate availability, decrease in duration and rate of spikelet production, reduced grain filling and grain weight (Jagadish *et al.*, 2011)^[15].

As mean temperatures increase, weeds expand their range into new areas. Under high temperature, plants with C4 photosynthesis pathway (mostly weeds) have a competitive advantage over crop plants possessingC3 pathway (Yin and Struik, 2008) [31]. Based on the differences in temperature, C_4 species will be able to tolerate high temperature than C_3 species. Therefore, C_4 crops may benefit more than the C_3 crops from any temperature increase (Ziska and Bunce, 1997) ^[33]. Wild oat grown at high temperature 23/19 °C (day/night) completed their development faster than those grown at normal temperature 20/16°C. If the maturation rate is faster relative to the crop, more seeds may be deposited in the soil with a consequent increase in seed bank of wild oat plants (O'Donnell and Adkins, 2001) [23]. Tunget et al., (2007) [29] studied the effect of temperature on soybean, Sida spinosa (prickly sida) and Cassia obustutifolia (sicklepod) and reported that there was an increasing trend in root: shoot ratio in all species with increasing temperatures, however, the weeds consistently had higher root: shoot ratios. At temperatures where maximum growth occurred, the root: shoot growth ratio of soybean (at 32/27°C) was 0.8, and it was 1.3 and 1.6 for Sida spinosa (at 36/31 °C), and Cassia obustutifolia (at 36/31°C), respectively.

7. Elevated CO₂ and temperature

Atmospheric CO₂ and air temperature raising together, studied in these effects are very limited. Most studies have focused mainly on the response of plant species to elevated CO₂. The outcome can be totally different when both factors are taken together compared to when consider only one factor. Plant response to the interaction effect of CO_2 and temperature may be complex (Bazzaz, 1990)^[4]. Plants with C_3 photosynthetic pathways are expected to benefit more than C₄ from CO₂ enrichment (Patterson and Flint, 1980)^[25]. Under high temperature, plants with C4 photosynthesis pathway (mostly weeds) have a competitive advantage over crop plants of C₃ pathway (Yin and Struik, 2008) ^[31]. Based on the differences in temperature optima for physiological processes, it is predicted that C₄ species will be able to tolerate high temperature than C₃ species. Therefore, C₄ weeds may benefit more than the C_3 crops from any temperature. The plant comes underC₄ photosynthesis is usually not affected by atmospheric CO2 enhancement (Carter and Peterson, 1983)^[7]. At the same time elevated temperatures can override the stimulating effects of CO₂ on photosynthesis of C₃ plants (Batts et al., 1997)^[3]. Hence, the interactive effect of elevated CO₂ and temperature increases the competitive ability of C_4 weeds than C_3 weeds.

8. Crop weed competition under elevated CO₂ and temperature

The impact of climate change on crop-weed interactions are likely to vary by region and crop type. As the crop-weed interactions are balanced by various environmental factors, local changes in these factors may alter the balance towards either crop or weed. Changes in temperature and carbon dioxide are likely to have significant direct (CO_2 stimulated growth) and indirect (climatic variability) effects on weeds and that would affect crop-weed balance or lead to weed invasion. This differential response of C_3 and C_4 plants to elevated CO_2 and temperature can have important implications on crop-weed competition. For a C_3 crop, such as rice and wheat, elevated CO_2 may have positive effects on crop competitiveness with C_4 weeds (Yin and Struik, 2008; Fuhrer, 2003) ^[31, 12]. Alberto *et al.*, (1996) ^[2] suggest that competitiveness could be enhanced in C_3 crop (rice) relative to a C_4 weed (*Echinochloaglabrescens*) with elevated CO_2 alone but simultaneous increases in CO_2 and temperature still favour C_4 species. Plants with C_3 photosynthetic pathways are expected to benefit more than C_4 from CO_2 enrichment (Patterson and Flint, 1980) ^[25].

Ziska (2000) ^[32] reported soybean biomass (32%) and yield (23%) increased at elevated CO2 (ambient + 250 ppm) when grown in mono-culture. But when soybean was grown in competition with Chenopodium album (C3 weed), soybean biomass and vield reduction increased from 23% and 28% at ambient CO₂ to 34 and 39% at elevated CO₂, respectively due to 65% increase in C. album dry weight. Conversely, soybean yield diminished from 45% to 30% at elevated CO₂ compared to ambient CO_2 when grown in competition with A. retroflexus. These results suggest that under elevated CO₂, C. album would be benefited more than soybean and could become more dominating weed. In contrast, A. retroflexus would be less benefitted with rising CO₂ and soybean will likely have competitive edge when grown in competition with this species. In various crop-weed competition studies, where the photosynthetic pathway is the same, weed growth is favoured as CO_2 is increased. Therefore, C_3 weeds like P. minor and A. ludoviciana in wheat (C3) would aggravate with the increase in CO₂ due to climate change (Naidu, 2013)^[20]. Red rice responded linearly in terms of biomass as well as seed production. These results suggest that under elevated CO₂ concentrations, red rice will be more competitive than rice and will produce more seeds than at current CO₂ concentration

Weed competition will consequently decrease with increasing atmospheric CO_2 in C_3 plants. At the same time raising temperature override the stimulating effect of CO_2 in C_3 plants. Weed competition increases with increasing atmospheric CO_2 and temperature. In general, under elevated CO_2 , when weed is C_4 and crop is C_3 , crop is likely benefitted, whereas in all other cases weeds will get competitive advantage over crop. The crop-weed competition of different crops and weeds under elevated CO_2 is presented in (table 2) (Bunce and Ziska, 2000)^[6].

Weed species	Сгор	Favored under elevated CO2
Amaranthus retroflexus(C4)	Soybean (C ₃)	Crop
Amaranthus retroflexus(C4)	Sorghum (C4)	Weed
Chenopodium album (C ₃)	Soybean(C ₃)	Weed
Taraxacumofficinale(C ₃)	Lucern (C ₃)	Weed
Albutilontheophrasti(C ₃)	Sorghum (C4)	Weed
Taraxacum and Plantago(C ₃)	Grasses (C ₃)	Weed
<i>Red rice</i> (C ₃)	Rice (C ₃)	Weed
Echinochloaglabrescens(C ₄)	Rice (C ₃)	Weed

Table 2: Crop-weed competition under elevated CO2 conditions

9. Climate change and weed invasion

Climate change is expected to increase the risk of invasion by weeds from neighbouring territories. With the competitive ability, weeds often find an opportunity to establish new populations when natural or desirable plant species decline. Climate change may also favour expansion of weeds that have already established, but are currently restricted in range. The range expansion can be attributed to evolutionary adaptation (Clements and Ditommaso, 2012)^[8]. Warmer temperature will force some species to relocate, adapt or perish. Species which are active in summer will develop faster. Warmer climate restricts temperature sensitive species to high altitudes. In plains, this effect on distribution range is magnified because species without the ability to move to higher elevations must relocate further in the same altitude (Naidu, 2015)^[21].

In fact, climate change may favour certain native plants to such an extent that they then become weeds. Alien weeds are usually non-native, whose introduction results in wide-spread economic or environmental consequences (e.g. Lantana camara, Parthenium hysterophorus, Eichhorniacrassipes etc. in India). These weeds have strong reproductive capability and are better dispersers and breeders. With these characteristics, they are benefitted from climate change. Studies indicated that these weeds showed a strong response to increases in atmospheric CO₂ (Ziska *et al.*, 2004)^[34]. From the studies conducted at the Directorate of Weed Research, Jabalpur, India it was observed that the invasive weed Parthenium hysterophorus had shown tremendous growth response to elevated CO₂ (Naidu, 2013) ^[20]. Hence, the possibility that the recent increase in CO₂ during 20th century may have been a factor in the invasiveness of this species. (Bradley et al., 2010)^[5] Reported that the risk of invasiveness was higher under elevated CO₂ whereas elevated temperature it might be increase or decrease.

10. Conclusion

In conclusion, increasing temperature and elevated CO_2 are the important issues of changing climate with pronounced impacts on agriculture ecosystems in general and weed species specifically. In various studies, it is confirmed that both crops and weeds respond to changing climate scenario. Weeds comes under C₃pathway dominates under elevated CO_2 conditions, whereas C₄ weed may dominate under elevated temperature. The interactive effect of elevated CO_2 and temperature showed that C₄ weeds dominate over C₃weeds. Crop weed competition was below at elevated CO_2 where as high under elevated temperature alone as well as the interactive effect of elevated CO_2 and temperature. Hence, weed management will be a serious issue in future agriculture.

11. Reference

- 1. Acock B. Effects of Carbon Dioxide on Photosynthesis, Plant Growth, and Other Processes 1. Impact of carbon dioxide, trace gases, and climate change on global agriculture, (impact of carbond). 1990, 45-60.
- Alberto AM, Ziska LH, Cervancia CR, Manalo PA. The influence of increasing carbon dioxide and temperature on competitive interactions between a C₃ crop, rice (*Oryza sativa*) and a C₄ weed (*Echinochloaglabrescens*). Functional Plant Biology. 1996; 23(6):795-802.
- 3. Batts GR, Morison JIL, Ellis RH, Hadley P, Wheeler TR. Effects of CO₂ and temperature on growth and yield of crops of winter wheat over four seasons. European Journal of Agronomy. 1997; 7(1-3):43-52.
- 4. Bazzaz FA. The response of natural ecosystems to the rising global CO_2 levels. Annual review of ecology and systematics. 1990; 21(1):167-196.
- 5. Bradley BA, Blumenthal DM, Wilcove DS, Ziska LH.

Predicting plant invasions in an era of global change. Trends in ecology & evolution. 1996; 25(5):310-318.

- 6. Bunce JA, Ziska LH. Crop ecosystem responses to climatic change: crop/weed interactions. Climate change and global crop productivity. 2000, 333-348.
- 7. Carter DR, Peterson KM. Effects of a CO_2 enriched atmosphere on the growth and competitive interaction of a C_3 and a C_4 grass. Oecologia. 1983; 58(2):188-193.
- 8. Clements DR, Ditommaso A. Predicting weed invasion in Canada under climate change: evaluating evolutionary potential. Canadian journal of plant science. 2012; 92(6):1013-1020.
- Dass A, Shekhawat K, Choudhary AK, Sepat S, Rathore SS, Mahajan G, Chauhan BS, weed management in rice using crop competition a review. Crop Protection. 2017; 95:45-52
- Drake BG, Gonzalez Meler MA, Long SP. More efficient plants: a consequence of rising atmospheric CO₂? Annual review of plant biology. 1997; 48(1):609-639.
- 11. Fleming A, Vanclay F. Farmer responses to climate change and sustainable agriculture. A review. Agronomy for sustainable development. 2010; 30(1):11-19.
- Fuhrer J. Agroecosystem responses to combinations of elevated CO₂, ozone, and global climate change. Agriculture, Ecosystems and Environment. 2003; 97(1-3):1-20.
- 13. Holm LG, Plucknett DL, Pancho JV, Herberger, JP. The world's worst weeds. Distribution and biology. University Press of Hawaii, 1977.
- 14. Houghton JT, Meiro Filho LG, Callander BA, Harris N, Kattenburg A, Maskell K. Climate change 1995: the science of climate change. Climatic Change. 1996, 584.
- 15. Jagadish KS, Cairns JE, Kumar A, Somayanda IM, Craufurd PQ. Does susceptibility to heat stress confound screening for drought tolerance in rice. Functional Plant Biology. 2011; 38(4):261-269.
- Jinger D, Kaur R, Kaur N, Rajanna GA, Kumari K, Dass A. Weed dynamics under changing climate scenario: A Review. Int. J Curr. Microbiol. App. Sci. 2017; 6(3):2376-2388.
- Kimball BA. Carbon Dioxide and Agricultural Yield: An Assemblage and Analysis of 430 Prior Observations 1. Agronomy journal. 1983; 75(5):779-788.
- Metz B, Davidson O, Bosch P, Dave R, Mayer LA. Climate change. Synthesis report: summary for policymakers, 2007.
- 19. Mittler R, Finka, A, Goloubinoff P. How do plants feel the heat? Trends in biochemical sciences. 2012; 37(3):118-125.
- 20. Naidu VS. Invasive potential of C₃-C₄ intermediate *Parthenium hysterophorus* under elevated CO₂. The Indian Journal of Agricultural Sciences. 2013, 83(2).
- 21. Naidu VSGR. Climate change, crop weed balance and the future of weed management. Indian Journal of Weed Science. 2015; 47(3):288-295.
- 22. Nalli NR, Gambacorta A, Liu Q, Barnet CD, Tan C, Iturbide-Sanchez F, Morris VR. Validation of atmospheric profile retrievals from the SNPP NOAAunique combined atmospheric processing system. Part 1: Temperature and moisture. IEEE Transactions on Geoscience and Remote Sensing. 2018; 56(1):180-190.
- 23. O'donnell CC, Adkins SW. Wild oat and climate change: the effect of CO_2 concentration, temperature, and water

deficit on the growth and development of wild oat in monoculture. Weed Science. 2001; 49(5):694-702.

- 24. Patterson DT. Weeds in a changing climate. Weed Science. 1995; 43:685-701.
- 25. Patterson DT, Flint EP. Potential effects of global atmospheric CO_2 enrichment on the growth and competitiveness of C_3 and C_4 weed and crop plants. Weed Science. 1980; 28(1):71-75.
- 26. Rogers HH, Runion GB, Prior SA, Price AJ, Torbert HA, Gjerstad DH. Effects of elevated atmospheric CO₂ on invasive plants: comparison of purple and yellow nutsedge (*Cyperus rotundus* L. and *C. esculentus* L.). Journal of environmental quality. 2008; 37(2):395-400.
- Singh RP, Singh RK, Singh MK. Impact of climate and carbon dioxide change on weeds and their management-a review. Indian Journal of Weed Science. 2011; 43(1-2):1-11.
- 28. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Midgley PM. Climate change 2013: The physical science basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5) (Cambridge Univ Press, New York). 2013, 25.
- 29. Tungate KD, Israel DW, Watson DM, Rufty TW. Potential changes in weed competitiveness in an agroecological system with elevated temperatures. Environmental and Experimental Botany. 2007; 60(1):42-49.
- Yaduraju NT. Herbicide resistant crops in weed management. In the Extended Summaries, Golden Jubilee National Symposium on Conservation Agriculture and Environment. Banaras Hindu University Varanasi. 2007, 26-28.
- 31. Yin X, Struik PC. Applying modelling experiences from the past to shape crop systems biology: the need to converge crop physiology and functional genomics. New Phytologist. 2008; 179(3):629-642.
- 32. Ziska LH. The impact of elevated CO_2 on yield loss from a C_3 and C_4 weed in field-grown soybean. Global Change Biology. 2000; 6(8):899-905.
- 33. Ziska LH, Bunce JA. Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C_4 crops and weeds. Photosynthesis Research. 1997; 54(3):199-208.
- 34. Ziska LH, Faulkner S, Lydon J. Changes in biomass and root: shoot ratio of field-grown Canada thistle (*Cirsium arvense*), a noxious, invasive weed, with elevated CO₂: implications for control with glyphosate. Weed Science. 2004; 52(4):584-588.
- 35. Ziska LH, Tomecek MB, Gealy DR. Evaluation of competitive ability between cultivated and red weedy rice as a function of recent and projected increases in atmospheric CO₂. Agronomy Journal. 2010; 102:118-123.