

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(1): 1012-1016 Received: 10-11-2018 Accepted: 12-12-2018

Praveen Kumar

Department of Veterinary Medicine, College of Veterinary and Animal Sciences, G.B. Pant University of Agriculture and Technology, Pantnagar, U. S. Nagar, Uttarakhand, India

SK Shukla

Department of Veterinary Medicine, College of Veterinary and Animal Sciences, G.B. Pant University of Agriculture and Technology, Pantnagar, U. S. Nagar, Uttarakhand, India

Effect of *Curculigo orchioides* in experimental hepatotoxicity in cockerels

Prayeen Kumar and SK Shukla

Abstract

Ethanolic and aqueous extracts prepared from rhizomes of *Curculigo orchioides* as herbal medicines were evaluated against acetaminophen-induced hepatotoxicity in cockerels. Acetaminophen @ 500 mg/body weight orally was given to induce hepatocellular damage. Cockerels given with ethanolic extract of *Curculigo orchioides* @ 70 mg/kg body wt and acetaminophen revealed restoration of Hb, PCV, TEC, TLC and lymphocytes and heterophils as well as total protein, albumin and globulin, glucose, cholesterol, bilirubin and activity of AST, ALT, ALP and LDH. The biochemical results were parallel to the histopathological analysis of liver sections as treated birds clearly showed normal hepatic cells and central vein thereby confirming hepatoprotective activity. These findings had suggested that *Curculigo orchioides* is a promising product in protecting the liver against toxic injury via the restoration of haematalogical and biochemical parameter. Aqueous extract showed least activity. Ethanolic extract showed presence of alkaloid, flavonoid, glycosides, Protein, reducing sugars, resin, saponins and sterol.

Keywords: Cockerels, Curculigo orchioides, hepatoprotective, phytochemial

Introduction

Poultry meat is one of the fastest growing components of global meat demand and India is experiencing rapid growth in its poultry sector. For optimum productivity in today's intensive nature of poultry farming, it is necessary that the birds remain healthy. Liver is a vital organ involved in various metabolic and detoxification mechanism. The toxins may cause varying degree of damage to the liver and affect liver functions resulting in poor health and production. Liver extract derived from liver of other mammals or fishes are the drug of choice in hepatic abnormilities. However it poses serious risk of transmitting infections to animals and human both as well as is costly. Presently herbal liver formulations are in use in treating cases of primary and secondary hepatic diseases. The rhizome and tuberous roots of *Curculigo orchioides* have been extensively used for the treatment of various diseases, including cancer, jaundice, asthma and diarthrosis wound healing [1]. It is also considered to be tonic, alterative, demulcent, diuretic, and restorative, and is used as a poultice for itch and skin disease [2]. The present study was undertaken to record the effect of *C. orchioides* on liver function markers following experimental hepatotoxicity in cockerels.

Material and Methods

The rhizomes of *C. orchioides* were procured locally and were identified and authenticated from Medicinal research and development center of the university. These were shade dried and ground in a Willey Grinder at room temperature. For preparation of the ethanolic or aqueous extract, 100 grams each powder was soaked in 1000 ml of absolute ethanol or water for 48 hr at 37 0 C with continuous stirring. The contents were filtered and concentrated by evaporation at lower temperature (45-50 $^{\circ}$ C) and reduced pressure using rotatory vacuum evaporator [3] and lyophilized to get the final extract residue. These were stored at 4 0 C in refrigerator till further use.

The extracts were analysed for major phytochemical groups, viz. alkaloids, anthraquinones, flavonoids, saponins, tannins, sterols, reducing sugars, glycosides, resins, triterpenes, proteins and coumarins by standard methods [4, 5, 6, 7].

One Hundred, 3-month-old cockerels belonging of same hatch were procured from Instructional Poultry Farm of the University and randomly divided into 5 groups I, II, III, IV and V of 20 each. All the groups had almost equal average body weight and maintained under standard deep litter managemental conditions. Gr I served as healthy control while gr II received acetaminophen @ 500 mg/kg body weight orally for 7 days [8] and served as infected control. Gr III received silymarin (as a standard reference) along with acetaminophen for 7 days and thereafter only silymarin was given upto 35th day. In cockerels of gr IV and gr V,

Correspondence Praveen Kumar

Department of Veterinary Medicine, College of Veterinary and Animal Sciences, G.B. Pant University of Agriculture and Technology, Pantnagar, U. S. Nagar, Uttarakhand, India ethanolic and aqueous extracts @ 70 mg/kg b wt ^[9] along with acetaminophen for 7 days and thereafter only extract were given upto 35th day.

The blood samples were collected on day 0, 7, 15, 21, 28, 35 and 42 of treatment, for haematological (Hb, TEC, TLC, PCV and DLC) and biochemical parameters (glucose, total cholesterol, total protein, albumin, globulin, albumin: globulin ratio, blood urea nitrogen and serum bilirubin) and activities of liver enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH)). Liver samples were collected in 10% buffered formalin for histopathological study and examined for any type of gross changes from each group on 7th, 21st and 35th day of treatment. The formalin fixed tissue pieces were serially dehydrated in alcohol and acetone, embedded in paraffin blocks and sections were cut and stained in hematoxyline and eosin stain for histopathological examination by standard procedures. The results were analysed as per the standard method [10].

Results and Discussion

The ethanolic extract residue of *C. orchioides* had oily appearance and blackish brown colour with 8.29% yield whereas its aqueous extract was brown in colour and solid dry powder in consistency with 6.47% yield. Ethanolic extract was positive for alkaloid, flavonoid, glycosides, protein, reducing sugars, resin, saponins and sterol. Anthraquinones, couramins and triterpenes were additionally present in aqueous extract with the absence of tannis, saponins and sterols

A significant decrease in Hb, PCV, TEC & lymphocytes and increase in TLC & heterophils values were observed in gr II as compared to gr I, III, IV and V from 7th day onward up to the end of experiment (Table 1). Ethanolic and aqueous extract of *C. orchioides* significantly restored these values to normalcy. Hb value in ethanolic extract treated birds was significantly higher than aqueous extract treated birds from 28th day to the end of experiment (Table 1).

Table 1: The value of Hb (mg/dl), PCV (%), TEC(x10⁶), TLC(x10³), Lymphocytes (%) and Heteropphils (%) in cockerels treated with *Curculigo orchioides*

Haematological	0 day	7 th day	28th day	42 nd day			
Haemoglobin							
Group 1	89.7±0.892	89.2±0.778a	97.8±0.443a	99.6±1.771 ^a			
Group II	87.5±0.638	71.2±0.704 ^b	73.6±1.185 ^b	80.1±1.336 ^b			
Group III	89.1±0.842	87.1±0.678 ^a	101.7±1.731°	109.7±0.622°			
Group IV	88.6±0.982	87.6±1.341a	99.8±0.548°	107.8±1.491°			
Group V	89.4±1.017	82.9±0.784a	94.1±1.647 ^d	100.4±0.899 ^d			
PCV							
Group 1	22.5±0.957	22.75±0.629a	28.25±0.854a	29.75±1.493a			
Group II	22.25±0.479	17±0.707 ^b	18.25±0.629b	19.25±0.479b			
Group III	23±0.707	21.75±0.479a	32.5±0.289°	32.25±0.854a			
Group IV	21.5±0.006	21.2±0.006a	31.±0.009a	30.5±0.011a			
Group V	21±0.004	20.5±0.006°	27.7±0.011a	27.5±0.002°			
		TEC					
Group 1	2.283±0.149	2.400±0.103 ^a	2.682±0.016 ^a	2.646±0.018 ^a			
Group II	2.238±0.115	1.771±0.096 ^b	2.292±0.051 ^b	2.403±0.102b			
Group III	2.414±0.048	2.368±0.123a	2.659±0.014 ^a	2.727±0.031a			
Group IV	2.403±0.066	2.254±0.097 ^a	2.727±0.031a	2.717±0.025 ^a			
Group V	2.225±0.099	2.173±0.052a	2.689±0.038a	2.688±0.028a			
TLC							
Group 1	17.150±0.552	19.069±0.387 ^a	18.267±0.238 ^a	18.223±0.379 ^a			
Group II	17.405±0.185	24.849±0.913b	22.854±0.913b	23.254±0.465 ^b			
Group III	17.853±0.592	18.377±0.648 ^a	18.305±0.606 ^a	18.589±0.360 ^a			
Group IV	17.479±0.210	17.949±0.558 ^a	17.701±0.545 ^a	19.565±0.469 ^a			
Group V	18.912±0.269	17.526±0.789a	18.639±0.334a	19.427±0.643a			
		Lymphocytes					
Group 1	10.898±0.723	10.744±0.393a	11.026±0.385a	11.183±0.530 ^a			
Group II	10.168±0.449	8.901±0.527 ^b	9.012±0.427 ^b	9.619±0.286 ^b			
Group III	10.036±0.447	10.956±0.531a	11.038±0.683a	11.883±0.471 ^a			
Group IV	10.956±0.405	10.859±0.140 ^a	11.079±0.457 ^a	10.921±0.394 ^a			
Group V	9.621±0.206	10.449±0.454a	11.457±0.290a	10.886±0.308 ^a			
Heterophils							
Group 1	4.943±0.459	4.916±0.567 ^a	5.060±0.226a	5.438±0.166 ^a			
Group II	4.701±0.514	7.630±0.599 ^b	6.676±0.250 ^b	6.100±0.159 ^b			
Group III	4.577±0.238	5.087±0.676 ^a	4.911±0.415 ^a	5.398±0.166 ^a			
Group IV	4.906±0.230	5.100±0.516 ^a	5.125±0.292 ^a	5.280±0.151 ^a			
Group V	5.294±0.220 ^a	5.556±0.650 ^a	5.057±0.169a	4.981±0.645			

There was significant decrease in PCV values in groups V as compared to treated and control groups on 7^{th} and 42^{nd} day post-treatment. Reduction in TEC and Hb may be due to oxidative damage-mediated removal of affected erythrocyte induced by acetaminophen. Increased generation of free radicals can cause cell membrane damage, which in turn inactivate membrane Na^+ - K^+ -ATPase $^{[11]}$, thereby allows entry of Ca^{+2} into the cell. The sustained increase in intracellular calcium leads to free-radical generations, which in turn further inhibit Na^+ - K^+ -ATPase. Thus the acetaminophen mediated generation of free-radicals and

consequent oxidative damage to erythrocytes can cause mechanical fragility of plasma membrane, thereby shortening RBC life span and its removal from circulation. Disintegration of erythrocytes in the circulation might have resulted in Hb reduction, which in turn was associated with decrease in PCV and TEC [12]. Ethanolic extract of *C. orchioides* protects the disintegration of erythrocytes. Gupta and Mishra (2008) [13] found that *C. orchioides* restored Na+K+ATPase levels to normalcy in paracetamol and aflatoxin induced hepatic injury. Neutrophilia and lymphocytopenia were prominent in animals subjected to

hepatopathy. This might be due to stress coupled with inflammatory changes in body tissue, which is responsible for phagocytosis of toxic substances and neutrophilia was induced by tissue demand for phagocytic function [14]. An increase in heterophil count and decrease in lymphocyte count was also reported by Rajalakshmi and Sasikala (2010) [15] as was observed in this study. Roa and Mishra (2004) [16] and Rajalakshmi and Sasikala (2010) [15] also found the restoration of PVC and Hb with the administration of *C. orchioides*.

Glucose and bilirubin values were increased after induction of hepatopathy in untreated group from 7th day till end of experiment (Table 2). Treated groups revealed significant reduction in total proteins, albumin and cholesterol than untreated groups (Table 2). Significant increase in the globulin was recorded following treatment with ethanolic and aqueous extracts and silymarin as compared to gr 2 (Table 2). The changes in blood urea nitrogen were non-significant.

Table 2: The value of Glucose (mg/dl), Cholestrol (mg/dl), Total Protein (g/L), Albumin (g/L), Globulin (g/L), and A: G ratio in cockerels treated with *Curculigo orchioides*

Biochemical	0 day	7 th day	28 th day	42 nd day			
Glucose							
Group 1	10.633±0.225	9.302±0.202a	9.846±0.214a	9.705±0.331a			
Group II	9.737±0.216	20.290±1.746 ^b	17.085±1.419 ^b	13.717±1.037 ^b			
Group III	10.635±0.583	11.144±1.105 ^a	10.014±0.236 ^a	9.699±0.305a			
Group IV	10.365±0.403	11.928±1.255a	9.650±0.264a	9.676±0.331a			
Group V	9.835±0.229	13.199±0.960a	10.251±1.077 ^a	9.935±0.313a			
	Cholestrol						
Group 1	4.326±0.137	4.368±0.038	4.287±0.106a	4.372±0.037 ^a			
Group II	4.336±0.062	4.579±0.097	5.261±0.113 ^b	4.937±0.252b			
Group III	4.342±0.055	4.480±0.059	4.282±0.064a	4.415±0.055a			
Group IV	4.364±0.118	4.328±0.074	4.331±0.107 ^a	4.250±0.074a			
Group V	4.212±0.077	4.322±0.067	4.377±0.100a	4.255±0.102 ^a			
		Total protein					
Group 1	58.665±2.666	62.843±2.188ac	61.918±2.453a	62.408±1.371 ^a			
Group II	58.615±2.147	45.878±1.575 ^b	47.993±1.842 ^b	50.783±2.053b			
Group III	59.243±2.579	63.438±2.500a	68.870±1.193 ^a	67.513±2.794 ^a			
Group IV	57.848±1.07	60.465±1.05 ^a	67.365±1.78 ^a	69.183±0.94 ^a			
Group V	61.125±2.02	58.228±1.58a	64.165±3.42a	63.813±2.37 ^a			
		Albumin					
Group 1	34.553±2.305	35.955±1.482a	35.425±1.697 ^a	35.470±0.921			
Group II	33.473±1.057	27.510±1.472 ^b	27.600±1.177 ^b	30.268±1.919			
Group III	35.173±1.531	34.323±2.420a	35.620±1.264a	36.058±1.397			
Group IV	34.928±1.362	32.615±0.813a	34.028±0.774a	36.193±1.378			
Group V	34.643±1.067	32.173±1.501 ^a	34.600±1.925a	33.160±2.108			
	Globulin						
Group 1	24.113±0.825	26.888±1.046a	26.493±1.229a	26.938±1.590a			
Group II	25.143±1.394	18.368±0.747 ^b	20.393±1.170b	20.515±0.719 ^b			
Group III	24.070±1.204	29.115±2.049a	33.250±1.456°	31.455±1.866			
Group IV	34.643±1.067	32.173±1.501 ^a	34.600±1.925a	33.160±2.108 ^a			
Group V	26.483±1.030	26.055±0.900a	30.653±1.550ac	29.565±2.124a			
A:G ratio							
Group 1	1.435±0.095	1.340±0.055	1.342±0.070ab	1.334±0.100ab			
Group II	1.340±0.059	1.506±0.099	1.463±.083 ^b	1.481±0.106 ^b			
Group III	1.464±0.045	1.200±0.125	1.080±0.072°	1.144±.059 ^c			
Group IV	1.536±0.109	1.178±0.064	1.029±0.059°	1.144±0.083°			
Group V	1.310±0.026	1.240±0.074	1.182±0.084°	1.091±0.093°			

Hyperglycaemia may be due to the degenerative hepatic lesions and also can follow the metabolic acidosis. Reduction in glucose level after the treatment with extracts was reported by Irsad et al. (2006) [17], Madhavan et al. (2007) [18] and Aritajat et al. (2008) [19] also. Due to the damage of hepatocytes there was decreased elimination of bilirubin and thereby its level was increased as observed by Gupta and Mishra (2008) [13] and Rosa et al. (2009) [20] also Kaneko (1989) [21] and Mezey (1978) [22] reported that proteins synthesized by the liver are frequently decreased in patients with liver diseases and decrease in circulating proteins such as albumin occur. These values came to normalcy following therapy indicating the regenerating ability of the drug. Globulins are intermediate proteins which are involved in antibody formation. Venukumar and Latha (2002) [9] and Rao and Mishra (2004) [16] also observed the same findings. Hepatic cholesterol homeostasis is maintained by an equilibrium between the activities of hydroxy methyl glutaryl

CoA (HMG-CoA) reductase and that of acyl CoA: cholesterol acyl transferase ^[23]. Reduction in cholesterol could also be due to the deficient metabolism of lipids in the liver ^[24]. ALT, AST, ALP and LDH activities were significantly

elevated in infected group as compared to the treated groups (Table 3). Increased activities of ALT, AST, ALP and LDH reflect the damage of liver hepatocytes and indirectly impairment of liver functions. Extracts of *C. orchioides* significantly reduced the elevated levels of these enzymes and it was also similar to the birds treated with silymarin. One of the hallmark signs of hepatic injury or damage is apparent leakage of cellular enzymes into plasma [11]. ALT, AST, ALP and LDH are commonly used as marker enzymes in accessing hepatotoxicity [25, 26, 27]. Hepatoprotective effect of *C. orchioides* is evidenced by the improvement of ALT, AST, ALP and LDH levels. Venukumar and Latha (2002) [9], Irshad *et al.* (2006) [17], Gupta and Mishra (2008) [13] and Rosa *et al.* (2009) [20] also recorded similar observations.

Table 3: The activities of AST (U/L), ALT (U/L), ALP (U/L) and LDH (U/L) in cockerels treated with Curculigo orchioides

Biochemical	0 day	7 th day	28th day	42 nd day			
AST							
Group 1	391±15.138	402±19.399a	404±11.453	401±7.692			
Group II	385±16.350	621±12.754b	463±16.361	441±22.587			
Group III	397±17.093	411±16.366a	404±8.554	419±14.646			
Group IV	400±10.472	411±18.686a	402±16.941	422±15.422			
Group V	404±16.718	485±9.354a	421±16.618	414±15.519			
ALT							
Group 1	98±3.697	100±4.882a	101±1.080a	110±2.828			
Group II	99±1.472	309±8.256b	128±9.704 ^b	122±7.494			
Group III	100±1.683	113±4.601a	101±2.582a	113±3.488			
Group IV	101±2.449	111±1.780a	101±3.240a	112±2.483			
Group V	99±3.416	148±9.806a	112±6.124a	112±3.342			
ALP							
Group 1	123±5.196	126±8.287a	124±4.378	122±2.799			
Group II	121±7.106	343±4.708°	148±5.115	141±3.391			
Group III	124±4.378	135±8.175a	130±5.066	125±4.491			
Group IV	124±4.301	136±10.124a	128±5.050	125±5.958			
Group V	124±2.739	246±14.849b	126±7.269	134±7.083			
LDH							
Group 1	479±16.010	482±14.872a	494±1.080	486±9.018			
Group II	484±19.506	773±12.891 ^b	509±12.457	493±3.082			
Group III	482±11.225	502±8.784a	483±3.559	486±4.848			
Group IV	477±4.601	503±13.058a	491±5.523	479±8.765			
Group V	481±6.868	553±14.680°	497±11.195	497±5.307			

There was significant decrease in feed consumption and body weight in gr II as compared to gr I, III, IV and V from 14th day onward till end of experiment. Body weight increased significantly in the gr IV at 35th day of treatment as compared to other groups which might be due to increase in function of hepatocyte and increased feed intake.

The biochemical results were comparable to the histopathological analysis of the liver sections as gr I (Fig. 1) showed normal cellular architecture with sinusoidal spaces and central veins. Severe histopathological changes were clearly observed in intoxicated cockerels revealing

centrilobular hepatic necrosis. At 1st week, moderate to mild leukocytic infiltration into the portal areas was evident. Occasionally clumps of hepatic cells were hazy in appearance and the sinusoids were wide but narrow (Fig 2). When *C. orchioides* were given with acetaminophen, significant decrease in hepitocellular changes was observed. Similar changes were seen in silymarin treated group. These results suggest that *Curculigo orchioides* has hepatoprotective action. It increases the Hb, PCV, TEC, Lymphocytes, total protein, albumin, globulin and decreases glucose, total cholesterol, bilirubin, AST, ALT, ALP and LDH values to normalcy.

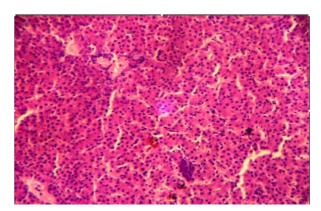


Fig 1: Normal hepatic lobulations with normal hepatocytes

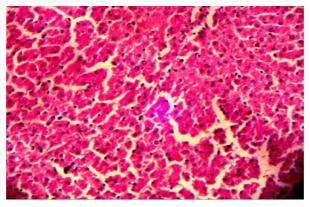


Fig 2: Intracytoplasmic cloudy swelling pyknotic nuclei and vacuoles representing fatty degeneration and lymphocytic inflitration

Acknowledgments

The authors are thankful to the Dean, College of Post Graduate Science, Dean, College of Veterinary and Animal Sciences and Director Experiment Station, G.B. Pant University of Agriculture and Technology for providing necessary facilities to carry out this research work.

References

- Dhar ML, Dhar BN, Dhawan DN, Mehrota C, Ray. Screening of Indian plants for biological activity part 1. Indian Journal of Experimental Biology. 1968; 6(6):232-249
- 2. Shri NG, Laxmi NM, Shantosh KA. Corchioside A, an orcinol glycoside from *Curculigo orchioides*. Phytochemistry. 1989; 28:1771-1772
- 3. Singh B. Adaptogenic activity of a novel, with a nolide-free aqueous fraction from the roots of *Withania somnifera Dun*. Phytotherapy Res. 2001; 15:311-318.
- 4. Das, PK, Nath V, Gopde KD, Sangal AK. Preliminary phytochemical and pharmacological studies on *Coculus hirsutus* Linn. Indian Journal of Medicinal Research. 1964; 52:300.
- 5. Harborne JB. Phytochemical methods. Chapman and Hall, London, 1973, 117.
- 6. Sofawara A. Medicinal plants and traditional medicine in Africa. Chichester, John Wiley, 1982.
- 7. Arunadevi R. Investigation on anti-inflammatory, antinoceptive and antipyretic activities of different fractions of *Caesalpinia bonducella*. M.V.Sc. Thesis. I.V.R.I. Izatnagar, Bareilly, U.P., India, 2003.
- 8. Bhar MK, Khargharia S, Chakraborty AK, Mandal TK. Disposition kinetics of sparfloxacin in healthy, hepatopathic, and nephropathic conditions in chicken after single intravenous administration. Indian Journal of Pharmacology. 2009; 41:106-109
- 9. Venukumar MR, Latha MS. Effect of *Coscinium fenestratum* on hepatotoxicity in rats. Indian Journal of Experimental Biology. 2004; 42:792–797.
- 10. Snedecor GW, Cochran WG. Statistical methods, 6th Edn, Allied Pacific Pvt. Ltd., Bombay, 1994, 557.
- 11. Kumar P, Prasad R, Singh KK, Roy BK. Hepatoprotective effect of *Centella asiatica* against paracetamol induced liver damage in broiler chicken. Indian Journal of Poultry Science. 2009; 44:101-104
- 12. Chauhan S, Nath N, Tule V. Antidiabetic and antioxidant effects of *Picrorhiza kurroa* rhizome extracts in diabetic rats. Indian Journal of Clinical Biochemistry. 2008; 23:238-242.
- 13. Gupta AK, Misra N. Hepatoprotective activity of aqueous ethanolic extract of *Curculigo orchioides* in paracetamol intoxicated Albino rats. American Journal of Pharmacology and Toxicology. 2008; 3:17-20.
- Duncan RJ, Prasse KW. Veterinary Laboratory Medicine and Clinical Pathology, The Iowa State University Ames, Iowa, 1977
- 15. Rajalakshmi S, Sasikala S. Role of *Curculigo orchioides* Gaertn. in male albino rats. Asian Journal of Animal Science. 2010; 2:259-260.
- 16. Rao KS, Misha SH. Studies on *Curculigo orchioides* Gaertn. for anti-inflammatory and hepatoprotective activities. Indian Drugs. 2004; 33:20-25.
- 17. Irshad, S, Singh J, Jain SP, Khanuja SPS. *Curculigo orchioides Gaertn*. (Kali Musali) an endangered medicinal plant of commercial value. Natural Product Radiance. 2006; 5:369-372.

- 18. Madhavan V, Joshi R, Murali A, Yoganarasimhan SN. Antidiabetic activity of *Curculigo Orchioides* root tuber. Pharmaceutical Biology. 2007; 45:18-21.
- 19. Aritajat S, Saenphet K, Thaworn V, Wutteeraphol S. Effects of selected herbal extracts on blood chemistry profiles in rats. Southeast Asian Journal of Tropical Medicine and Public health. 2008; 39:78-81.
- Rosa M, Gutierrez P, Solis RV. Hepatoprotective and inhibition of oxidative stress in liver of *Curculigo* orchioides. Records of Natural Product. 2009; 3:146-151.
- 21. Kaneko JJ. Serum proteins and dysproteinemia. In: Clinical Biochemistry of Domestic Animals. (J.J. Kaneko, ed.), Academic press, San Diego, 1989, 142-165.
- 22. Mezey E. Liver disease and nutrition. Gastroenterology. 1978; 74:770-783.
- 23. Hochgraf E, Cogan U, Shoshama M. Dietary oxidized linoleic acid enhances liver cholesterol biosynthesis and secretion in rats. Journal of Nutritional Biochemistry. 2000; 11:176-180.
- 24. Gauda IM, Aziz SAA, Ahmed AA, Lofti MM, Soliman MM. Changes in liver function in experimentally lead poisoned goats. Arch. Fur. Exp. Vet. Med. 1985; 39:257-267.
- 25. Yanpallewar SU, Sen S, Tapas Kumar SM, Raju SS, Acharya SB. Effect of *Azadirachta indica* on paracetamol-induced hepatic damage in albino rats. Phytomedicine. 2003; 10:391-396.
- 26. Asha VV, Akhila S, Wills PI, Subramoniam A. Further studies on the antihepatotoxic activity of *Phyllanthus maderaspatensis* Linn. J Etlmophannacol. 2004; 92:67-70.
- 27. Yen FL, Wu TH, Lin LT, Lin CC. Hepatoprotective and antioxidant effect of *Cuscuta chinensis* against acetaminophen-induced hepatotoxicity in rats. J Ethanopharmacol. 2007; 111:123-128.