

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com



E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2018; 7(5): 2845-2848 Received: 16-07-2018 Accepted: 18-08-2018

#### VD Kadam

PG Student, Department of Horticulture, College of Agriculture, Vasantrao Naik Marathwada Krishi Vidyapeeth Parbhani, Maharashtra, India

#### SJ Shinde

Associate Professor (Horticulture), Department of Horticulture, College of Agriculture, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

#### SJ Syed

PhD Scholar, Department of Horticulture, College of Agriculture, Parbhani, Vasantrao Naik Marathwada Krishi Vidyapeeth Parbhani, Maharashtra, India

Correspondence VD Kadam

PG Student, Department of Horticulture, College of Agriculture, Vasantrao Naik Marathwada Krishi Vidyapeeth Parbhani, Maharashtra, India

# Effect of different spacing and fertilizer levels on growth parameter and quality parameters of beetroot (*Beta vulgaris* L.)

# VD Kadam, SJ Shinde and SJ Syed

#### Abstract

A field experiment was carried out at Department of Horticulture, College of Agriculture, V.N.M.K.V., Parbhani. The field experiment was carried out in Factorial Randomized Block Design (FRBD) with three replication during the *Rabi* season, 2017. Treatment consisted of three levels of spacing S<sub>1</sub> (15cm ×15cm), S<sub>2</sub> (20cm×15cm) and S<sub>3</sub> (30cm×15cm) and three levels of fertilizers F<sub>1</sub> (100% RDF), F<sub>2</sub> (125% RDF)and F<sub>3</sub> (150% RDF). The experiment was conducted in Factorial Randomized Block design with nine treatment combinations, replicated thrice. Variety "Ruby Queen" was selected for the study. Growth characters such as number of leaves per plant at harvest (15.64) were observed maximum with the treatments S<sub>3</sub> (30cm×15cm) and F<sub>3</sub> (150% RDF) with (15.88). The quality characters like TSS (11.63%), total sugar (8.50%), anthocyanin content (33.02 mg/100g) and iron content (1.14 mg/100g) were observed maximum with the treatment S<sub>3</sub> (30cm×15cm) and quality characters like TSS (11.62%), total sugar (8.45%), anthocyanin content (35.77 mg/100g) and iron content (1.18 mg/100g) were observed maximum with the treatment F<sub>1</sub> (100% RDF). The maximum physiological loss in weight (%) at 11<sup>th</sup> days (51.89%) was observed in the treatment S<sub>1</sub> (15cm×15cm) and at 11<sup>th</sup> days (54.00%) was observed in the treatment F<sub>1</sub> (100% RDF).

Keywords: Beetroot, PLW, Iron, Anthocyanin, FRBD, Growth

#### Introduction

Beetroot (*Beta vulgaris* L.) is a member of the *Chenopodiaceae* family which includes silver beet, sugar beet and fodder beet. Chromosome no. of beetroot is 2n=18. Beetroot is also known as 'garden beet' or 'table beet'. They are believed to have originated from Germany. They are biennials although they usually grow as annuals. Beetroot is essentially a modern vegetable and has become an important home-garden and market garden crop, cultivated for its fleshy roots. Beetroot produces green tops and swollen root during its first growing season. It is highly productive as it grows quickly and usually free from pests and diseases.

The total area under beetroot cultivation and production of beet root in India is about 2164 hectares and 36260 tones, respectively. The productivity of beetroot in India is 16.75 T/ha. (Anon 2017) <sup>[1]</sup>. Vegetables play an important role in human nutrition. During recent years, the interest in vegetable production has increased rapidly as a result of great appreciation of food value of vegetables and the place of vegetables in the nation's food requirements (Bansil, 2008).

Beetroot is an excellent source of iron, magnesium, sodium, potassium and betanin which are important for cardiovascular health. It is also abundant in vitamin C and antioxidants. Beets are also good for keeping cholesterol levels in body which protects the body against heart diseases. The plant also protects against birth defects and certain types of cancer. The herb is also a good general tonic that can be used by pregnant women, and is also good in purifying the liver, kidney and gall-bladder.

The climatic requirements of crop viz., temperature, humidity, light,  $CO_2$  concentration and radiation should be in permissible range of the crop to obtain higher yield. The environmental factors can be controlled under protective cultivation and optimization of growing conditions enhances the production multifold, compared to open field conditions. In general, the main purpose of growing high value crops in protective environment is to obtain blemish free high quality produce.

Beetroot responds well to increasing nitrogen, phosphorus and potassium levels, as these nutrients are essential to produce higher yield along with good quality. It is necessary to optimize fertilizer rates for beetroot in varying environments.

Nitrogen is the most important element of those supplied to sugar beet in fertilization. Nitrogen fertilizer has a pronounced effect on the growth and physiological and chemical

characteristics of the crop. So that, nitrogen could cause desirable effect on sugar beet growth and yield characters. Decidedly, phosphorus play important role in root growth and potassium is a major plant nutrient needed for sugar beet, which plays an important role in plant nutrition association with the quality of the production and increases disease resistance in plant. In Maharashtra state very less work was done on this aspect.

In India beetroot is generally sown during March–July in hills and during September-November in the northern plains. In the southern plains the sowing is taken up from July to November. The optimum recommended spacing is adopted 45-60 cm x 8-10 cm. Thinning is practiced to maintain the intra-row spacing and optimum population. The seeds are sown at a depth of about 2.5 cm to ensure good germination. The farmers apply spacing & fertilizers as a traditional method. Considering the demand of the farmers in Marathwada region, the present investigation on beetroot.

### **Materials and Methods**

The detail of the materials used and techniques adopted during the course of the present study are described in this chapter under appropriate headings and sub headings. The meteorological data were collected from Agricultural Meteorological Observatory, Parbhani. The minimum and maximum temperatures recorded were 12 <sup>o</sup>C and 33 <sup>o</sup>C respectively. The average relative humidity ranges from 42.50 to 59.35%.

#### **Details of experimental treatments**

Factor A Spacing levels  $S_1\mathchar`-15cm\mathchar`-15cm,\ S_2\mathchar`-20cm\mathchar`-15cm and <math display="inline">S_3\mathchar`-30cm\mathchar`-15cm$ 

Factor B Fertilizer levels  $F_{1}\text{-}$  100% RDF,  $F_{2}-125\%$  RDF and  $F_{3}\text{-}$  150% RDF

The experiment was conducted in Factorial Randomized Block Design with three replication and two factors, Factor A- S levels (spacing) and Factor B- F levels (fertilizer). There were 3 levels of S (spacing) and 3 levels of F (fertilizer) were being tried as given in treatment details.

A uniform dose of 60 kg  $K_2O/ha$  was applied to all the plots before sowing. Half dose of N and full dose of  $P_2O_5$  as per treatments was applied as a basal dose before sowing. The beet root seeds are directly sown during *Rabi* season, 2017, with spacing 30 cm x 15 cm and the plot size 2.25 m x 1.5 m, and remaining half dose of N as per treatment was applied at 30 days after sowing. The doses of N, P and K are being applied through Urea, SSP & MOP respectively. The total treatment combinations were nine which are given in Table 1.

Table 1: Treatment combinations

| S. No.         | <b>Treatment Combination</b>  | Spacing (cm) | Fertilizer RDF (%) |
|----------------|-------------------------------|--------------|--------------------|
| T1             | $S_1F_1$                      | 15×15        | 100                |
| T <sub>2</sub> | $S_1F_2$                      | 15×15        | 125                |
| T <sub>3</sub> | $S_1F_3$                      | 15×15        | 150                |
| T <sub>4</sub> | $S_2 F_1$                     | 20×15        | 100                |
| T <sub>5</sub> | $S_2 F_2$                     | 20×15        | 125                |
| T <sub>6</sub> | S <sub>2</sub> F <sub>3</sub> | 20×15        | 150                |
| T <sub>7</sub> | S <sub>3</sub> F <sub>1</sub> | 30×15        | 100                |
| T <sub>8</sub> | S <sub>3</sub> F <sub>2</sub> | 30×15        | 125                |
| T9             | S <sub>3</sub> F <sub>3</sub> | 30×15        | 150                |

# **Results and Discussion** Growth parameters

The effect of spacing at  $S_3$  levels (30cm×15cm) on number of leaves per plant was found significantly maximum at 45 DAS

(9.54), 60 DAS (12.38) and at end of harvest (15.64) over rest of the treatments and which was at par with treatment 45 DAS (9.43), 60 DAS (12.30) and at harvest (15.54) with observed in  $S_2$  level (20cm×15cm). The minimum at number of leaves per plant 45 DAS (9.31), 60 DAS (12.18) and at harvest (15.44) with observed in  $S_1$  level (15cm×15cm). While, the effect of spacing was found non-significant at 15 and 30 DAS for number of leaves per plant. Similar results were reported by Bilekudari et al. (2005)<sup>[4]</sup>, Dod et al. (2010)<sup>[6]</sup>, Pervez et al. (2004) in radish. The effect of fertilizer at F<sub>3</sub> levels (150%) RDF) on number of leaves per plant was found significantly maximum at 45 DAS (10.89), 60 DAS (12.47) and at end of harvest (15.88) over rest of the treatments and which was at par with treatment 60 DAS (12.27) and at harvest (15.57) with observed in F<sub>2</sub> level (125% RDF). The minimum number of leaves per plant 45 DAS (8.14), 60 DAS (12.13) and at harvest (15.18) with observed in F<sub>1</sub> level (100% RDF). While, the effect of fertilizer was found non-significant at 15 and 30 DAS for number of leaves per plant. The variation in number of leaves between different fertilizer levels is attributed to more availability of nutrients to the crop. Similar results were reported by Jambukar and Wange (2006)<sup>[10]</sup> in beetroot. The interaction effect of different spacing and fertilizer levels was found non-significant for number of leaves per plant.

 
 Table 2: Effect of different levels of spacing and fertilizer on number of leaves per plant in beetroot

| Treatment                                                                      | Treatments            | 15   | 30   | 45    | 60    | At      |  |  |  |
|--------------------------------------------------------------------------------|-----------------------|------|------|-------|-------|---------|--|--|--|
| No.                                                                            |                       | DAS  | DAS  | DAS   | DAS   | harvest |  |  |  |
| Factor S: Spacing Levels                                                       |                       |      |      |       |       |         |  |  |  |
| 1                                                                              | $S_1$                 | 2.48 | 5.35 | 9.31  | 12.18 | 15.44   |  |  |  |
| 2                                                                              | $S_2$                 | 2.57 | 5.47 | 9.43  | 12.30 | 15.54   |  |  |  |
| 3                                                                              | <b>S</b> <sub>3</sub> | 2.74 | 5.59 | 9.54  | 12.38 | 15.64   |  |  |  |
| <u>SE+</u>                                                                     |                       | 0.16 | 0.11 | 0.10  | 0.11  | 0.16    |  |  |  |
| CD at 5%                                                                       |                       | NS   | NS   | 0.31  | 0.34  | 0.49    |  |  |  |
| Factor F: Fertilizer Levels                                                    |                       |      |      |       |       |         |  |  |  |
| 1                                                                              | $F_1$                 | 2.53 | 5.35 | 8.14  | 12.13 | 15.18   |  |  |  |
| 2                                                                              | F <sub>2</sub>        | 2.56 | 5.47 | 9.25  | 12.27 | 15.57   |  |  |  |
| 3                                                                              | F <sub>3</sub>        | 2.70 | 5.56 | 10.89 | 12.47 | 15.88   |  |  |  |
| <u>SE+</u>                                                                     |                       | 0.16 | 0.11 | 0.10  | 0.11  | 0.16    |  |  |  |
| CD at 5%                                                                       |                       | NS   | NS   | 0.31  | 0.34  | 0.49    |  |  |  |
| Interaction effect (S x F)                                                     |                       |      |      |       |       |         |  |  |  |
| <u>SE+</u>                                                                     |                       | 0.28 | 0.20 | 0.18  | 0.25  | 0.28    |  |  |  |
| CD at 5%                                                                       |                       | NS   | NS   | NS    | NS    | NS      |  |  |  |
| G. M .                                                                         |                       | 2.60 | 5.46 | 9.42  | 12.29 | 15.54   |  |  |  |
| Spacing levels – $S_1$ (15cm×15cm), $S_2$ (20cm×15cm) and $S_3$<br>(20cm×15cm) |                       |      |      |       |       |         |  |  |  |

Fertilizer levels –  $F_1$  (100% RDF),  $F_2$  (125% RDF), and  $F_3$  (150% RDF).

# **Quality parameters**

The maximum TSS (11.63%) was observed in the treatments  $S_3$  levels (30cm×15cm), which was statistically at par with the treatment  $S_2$ - 20cm×15cm (11.41%). The minimum TSS (11.17%) was recorded in the treatment  $S_1$  levels (15cm×15cm). Similar results were reported by Desuki *et al.* (2005) <sup>[5]</sup> in radish, Alves *et al.* (2010) <sup>[2]</sup> in carrot. The maximum TSS (11.62%) was observed in the treatments  $F_1$  levels (100% RDF), which was statistically at par with the treatment  $F_2$ - 125% RDF (11.37%). The minimum TSS (11.22%) was recorded under the treatment  $F_3$  levels (150% RDF). Similar results were reported by Gehan *et al.* (2013) <sup>[7]</sup> and Abdelaal *et al.* (2015) in sugar beet. The interaction effect of different spacing and fertilizer levels was found non-significant for total soluble solids (%) content.

The treatment S<sub>3</sub> levels ( $30cm\times15cm$ ) recorded maximum reducing sugar (0.86%), which was at par with the treatment S<sub>2</sub>-20cm×15cm (0.74%). The minimum reducing sugar (0.56%) was observed in the treatment S<sub>1</sub> levels ( $15cm\times15cm$ ). The maximum reducing sugar (0.83%) was observed in the treatment F<sub>1</sub> levels (100% RDF), while which was at par with the treatment F<sub>2</sub> 125% RDF (0.72) and F<sub>3</sub>150% RDF (0.62). The minimum reducing sugar (0.62%) was observed under the treatment F<sub>3</sub> levels (150% RDF). Similar results were reported by Ismail and El-Ghait (2004)<sup>[9]</sup> in sugar beet. The interaction effect of different spacing and fertilizer levels was found non-significant for reducing sugar content (%) of beetroot.

The maximum non reducing sugar (7.64%) was recorded in the treatment  $S_3$  levels (30cm×15cm), which was at par with the treatment  $S_2$ -30cm×15cm (7.56%). The minimum non reducing sugar (7.52%) was recorded in the treatment  $S_1$ levels (15cm ×15cm). The maximum non reducing sugar (7.62%) was noticed in the treatment  $F_1$  levels (100% RDF), which was at par with the treatment  $F_2$  -125% RDF (7.57%). The minimum non reducing sugar (7.51%) was noticed in the treatment  $F_3$  levels (150%RDF). The interaction effect of spacing and fertilizer levels was found non-significant for non-reducing sugar content (%) of beetroot.

The maximum total sugar (8.50%) was obtained under the treatments  $S_3$  levels (30cm×15cm), which was statistically at

par with the S<sub>2</sub>- 20cm×15cm (8.30%). The minimum total sugar (8.08%) was noticed under the treatment S<sub>1</sub> levels (15cm×15cm). Similar results were reported by Ismail and El-Ghait (2004) <sup>[9]</sup> in sugar beet. The maximum total sugar (8.45%) was obtained under the treatments F<sub>1</sub> levels (100% RDF), which was statistically at par with the F<sub>2</sub>- 125% RDF (8.29%). The minimum total sugar (8.13%) was noticed under the treatment F<sub>3</sub> levels (150% RDF). Similar results were reported by Tarvydiene *et al.* (2004), Jambukar and Wange (2006) <sup>[10]</sup> in beetroot. The interaction effect of different spacing and fertilizer levels was found non-significant for total sugar content (%) of beetroot.

The maximum anthocyanin content (33.02) was recorded in the treatment S<sub>3</sub> levels (30cm×15cm), which was at par with the treatment S<sub>3</sub>-20cm×15cm (32.82). The minimum anthocyanin content (32.72) was recorded in the treatment S<sub>1</sub> levels (15cm ×15cm). Similar results were reported by Silber *et al.* (2003) in bell pepper. The treatment F<sub>1</sub> levels (100% RDF) recorded maximum anthocyanin content (35.77), which was significantly superior over rest of the treatment. Significantly minimum anthocyanin content (30.34) was recorded in the treatment F<sub>3</sub> levels (150% RDF). Similar result were reported by Moor *et al.* (2009) and Attia *et.al.* (2013) <sup>[3]</sup>. The interaction effect of different spacing and fertilizer levels was found non-significant for anthocyanin content (mg/100g) of beetroot.

| Tuble 5. Effect of university of spacing and fertilizer on quarky parameters of been out |                |         |                       |                           |                    |                          |                   |  |
|------------------------------------------------------------------------------------------|----------------|---------|-----------------------|---------------------------|--------------------|--------------------------|-------------------|--|
| Treatment<br>No.                                                                         | Treatment      | TSS (%) | Reducing sugar<br>(%) | Non-reducing sugar<br>(%) | Total Sugar<br>(%) | Anthocyanin<br>(mg/100g) | Iron<br>(mg/100g) |  |
|                                                                                          |                |         | Factor                | S: Spacing Levels         |                    |                          |                   |  |
| 1                                                                                        | $S_1$          | 11.17   | 0.56                  | 7.52                      | 8.08               | 32.72                    | 1.09              |  |
| 2                                                                                        | $S_2$          | 11.41   | 0.74                  | 7.56                      | 8.30               | 32.82                    | 1.11              |  |
| 3                                                                                        | $S_3$          | 11.63   | 0.86                  | 7.64                      | 8.50               | 33.02                    | 1.14              |  |
| SE <u>+</u>                                                                              |                | 0.12    | 0.73                  | 0.87                      | 0.09               | 0.52                     | 0.01              |  |
| CD at 5%                                                                                 |                | 0.37    | 0.22                  | 0.26                      | 0.28               | 1.58                     | 0.03              |  |
| Factor F: Fertilizer Levels                                                              |                |         |                       |                           |                    |                          |                   |  |
| 1                                                                                        | $F_1$          | 11.62   | 0.83                  | 7.62                      | 8.45               | 35.77                    | 1.18              |  |
| 2                                                                                        | $F_2$          | 11.37   | 0.72                  | 7.57                      | 8.29               | 32.45                    | 1.12              |  |
| 3                                                                                        | F <sub>3</sub> | 11.22   | 0.62                  | 7.51                      | 8.13               | 30.34                    | 1.05              |  |
| <u>SE+</u>                                                                               |                | 0.12    | 0.07                  | 0.87                      | 0.09               | 0.52                     | 0.01              |  |
| CD at 5%                                                                                 |                | 0.37    | 0.22                  | 0.26                      | 0.28               | 1.58                     | 0.03              |  |
| Interaction effect (S x F)                                                               |                |         |                       |                           |                    |                          |                   |  |
| SE <u>+</u>                                                                              |                | 0.21    | 00.12                 | 0.15                      | 0.16               | 0.91                     | 0.019             |  |
| CD at 5%                                                                                 |                | NS      | NS                    | NS                        | NS                 | NS                       | NS                |  |
| G. M.                                                                                    |                | 11.40   | 0.72                  | 7.56                      | 8.29               | 32.85                    | 1.11              |  |

Table 3: Effect of different levels of spacing and fertilizer on quality parameters of beetroot

Spacing levels –  $S_1$  (15cm×15cm),  $S_2$  (20cm×15cm) and  $S_3$  (30cm×15cm). Eartilizer levels –  $E_1$  (100% PDE)  $E_2$  (15% PDE) and  $E_2$  (150% PDE)

Fertilizer levels –  $F_1$  (100% RDF),  $F_2$  (125% RDF), and  $F_3$  (150% RDF)

The treatment  $S_3$  levels (30cm×15cm) recorded maximum iron content (1.14), which was at par with treatment  $S_2$ -20cm×15cm (1.11). The minimum iron content (1.09) was recorded in the treatment  $S_1$  levels (15cm×15cm). The maximum iron content (1.18) was obtained in the treatment  $F_1$ levels (100% RDF), which was significantly superior over rest of the treatments. Significantly minimum iron content (1.05) was obtained in the treatment F<sub>3</sub> levels (150% RDF). Similar result were reported by Gopalan *et.al* (1989) <sup>[8]</sup>. The interaction effect of different spacing and fertilizer levels was found non-significant for iron content (mg/100g) of beetroot.

Table 4: Effect of different levels of spacing and fertilizer on Physiological loss in weight (PLW %) of beetroot

| Treatment No.               | Treatment             | 3 <sup>rd</sup> day | 5 <sup>th</sup> day | 7 <sup>th</sup> day | 9 <sup>th</sup> day | 11 <sup>th</sup> day |  |  |
|-----------------------------|-----------------------|---------------------|---------------------|---------------------|---------------------|----------------------|--|--|
| Factor S: Spacing Level     |                       |                     |                     |                     |                     |                      |  |  |
| 1                           | $\mathbf{S}_1$        | 13.45 (21.51)*      | 26.69 (31.10)*      | 36.57 (37.20)*      | 44.54 (41.86)*      | 51.89 (46.08*)       |  |  |
| 2                           | $S_2$                 | 11.05 (19.41)*      | 22.84 (28.54)*      | 32.27 (34.61)*      | 40.64 (36.60)*      | 47.14 (43.36)*       |  |  |
| 3                           | <b>S</b> <sub>3</sub> | 15.76 (23.39)*      | 24.49 (29.60)*      | 34.91 (36.21)*      | 42.84 (40.83)*      | 49.84 (44.90)*       |  |  |
| SE <u>+</u>                 |                       | 0.93                | 0.83                | 1.19                | 0.60                | 0.72                 |  |  |
| CD at 5%                    |                       | 2.81                | 2.48                | 3.57                | 1.80                | 2.18                 |  |  |
| Factor F: Fertilizer Levels |                       |                     |                     |                     |                     |                      |  |  |
| 1                           | $F_1$                 | 13.43 (21.49)*      | 27.24 (31.46)*      | 37.77 (37.92)*      | 46.08 (42.75)*      | 54.00 (47.29)*       |  |  |

| 2                            | F <sub>2</sub> | 10.99 (19.36)* | 22.67 (28.43)* | 32.51 (34.76)* | 40.66 (36.61)* | 46.42 (42.94)* |  |
|------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|--|
| 3                            | F <sub>3</sub> | 15.84 (23.45)* | 24.11 (29.40)* | 33.47 (35.34)* | 41.17 (39.91)* | 48.44 (44.10)* |  |
| $SE_{\pm}$                   |                | 0.93           | 0.83           | 1.19           | 0.60           | 0.72           |  |
| CD at 5%                     |                | 2.81           | 2.48           | 3.57           | 1.80           | 2.18           |  |
| Interaction effect (S x F)   |                |                |                |                |                |                |  |
| SE+ 1.62 1.43 2.06 1.04 1.26 |                |                |                |                |                |                |  |
| CD at 5%                     |                | NS             | NS             | NS             | NS             | NS             |  |
| G. M.                        |                | 13.42          | 24.67          | 34.58          | 42.64          | 49.62          |  |

Spacing levels –  $S_1$  (15cm×15cm),  $S_2$  (20cm×15cm) and  $S_3$  (30cm×15cm).

Fertilizer levels –  $F_1$  (100% RDF),  $F_2$  (125% RDF), and  $F_3$  (150% RDF).

\*Figures in parenthesis are arc sine value.

The maximum physiological loss in weight (15.76%) at 3<sup>rd</sup> day was recorded in the treatment  $S_3$  levels (30cm×15cm), which was statistically at par with treatment  $S_1$ -15cm×15 cm (13.45%). The treatment  $S_1$  levels (15cm×15cm) was found maximum physiological loss in weight at 5th day (26.69%), 7th day (36.57%), 9<sup>th</sup> day (44.54%), 11<sup>th</sup> day (51.89%) and which were statistically at par with the treatments  $S_3$  levels (30cm×15cm) at 5<sup>th</sup> day (24.49%), 7<sup>th</sup> day (34.91%), 9<sup>th</sup> day (42.84%) and at  $11^{\text{th}}$  day (49.84%) respectively. The minimum physiological loss in weight was observed in the treatment  $\hat{S}_2$  levels (20cm×15cm) at  $3^{rd}$  day (11.05%), 5<sup>th</sup> day (22.84%) and at 7<sup>th</sup> day (32.27%). Significantly minimum physiological loss in weight was observed in the treatment S<sub>2</sub> levels (20cm×15cm) at 9<sup>th</sup> day (40.64%) and 11<sup>th</sup> day (47.14). Similar result were reported by Kumar and Nagpal (1996)<sup>[11]</sup>. The maximum physiological loss in weight (15.84%) at 3<sup>rd</sup> day was recorded in the treatment F3 levels (150% RDF), which was statistically at par with treatment F1- 100% RDF (13.43%). The treatment F<sub>1</sub> levels (100% RDF) was found maximum physiological loss in weight at 5<sup>th</sup> day (27.84%), 7<sup>th</sup> day (37.77%), 9<sup>th</sup> day (46.08%) and at 11<sup>th</sup> day (54.00%), which was significantly superior over rest of the treatments at 5<sup>th</sup> day, 7<sup>th</sup> day, 9<sup>th</sup> day and at 11<sup>th</sup> day respectively. The minimum physiological loss in weight was observed in the treatment F<sub>2</sub> levels (125% RDF) at 3<sup>rd</sup> day (10.99%), 5<sup>th</sup> day (22.67%), 7<sup>th</sup> day (32.51%), 9<sup>th</sup> (40.66%) and at 11<sup>th</sup> (46.42). Might be due to its anti-senescent action and also due to its role in the maintenance of fruit firmness, reduction of respiration, and delay in the senescence. Similar result was reported by Siddiqui and Gupta (1997) <sup>[12]</sup>. The interaction effect of different spacing and fertilizer levels was found nonsignificant for physiological loss in weight (%).

# References

- Anonymous. Krishidainandini VNMKV, Parbhani, 2017, 139.
- Alves SSV, Negreiros MZ, De Aroucha EMM, Lopes WAR, Teofilo TMS, Freitas FCL *et al.* Quality of carrot roots under different population densities. Revista Ceres. 2010; 57(2):218-23.
- 3. Attia YM, Gamila Moussa EM, Sheashea ER. Characterization of red pigments extracted from red beet (*Beta vulgaris*, L.) and its potential uses as antioxidant and natural food colorants. Egypt. J Agric. Res Food Technology, 2013, 91(3).
- 4. Bilekudari MK, Deshpande VK, Shekhargouda, M. Effect of spacing and fertilizer levels on growth, seed yield and quality of radish. Karnataka J Agric. Sci. 2005; 18(2):338-342.
- Desuki ME, Salman SR, El-Nemr MA, Abdel-Mawgoud AMR. Effect of plant density and nitrogen application on the growth, yield and quality of radish (*Raphanus sativus* L.). Journal of Agronomy. 2005; 4(3):225-229.

- 6. Dod VN, Java, Giri, Deshmukh Manisha, More GB. Effect of plant spacings on seed yield and quality of radish. Annals of Plant Physiology. 2010; 24(1):110-111.
- Gehan AA, Badr EA, Afifi MHM. Root yield and quality of sugar beet (*Beta vulgaris* L.) in response to biofertilizer and foliar application with micronutrients. World Applied Sciences Journal. 2013; 27(11):1385-1389.
- 8. Gopalan C, Rama Sastri BV, Balasubramanian SC. Nutritive value of Indian Foods, 1989.
- Ismail AMA, El-Ghait RAA. Effect of balanced fertilization of NPK on yield and quality of sugar beet. Egyptian Journal of Agricultural Research. 2004; 82(2):717-729.
- Jambukar GS, Wange SS. Studies on diazotrophic inoculation under graded levels of nitrogen in beetroot crop. Journal of Maharashtra Agricultural Universities. 2006; 31(1):97-99.
- 11. Kumar R, Nagpal R. Effect of post-harvest treatment on the storage behavior of mango cv. Dusehri. Haryana J Hort Sci. 1996; 25:101-108.
- 12. Siddiqui S, Gupta OP. Effect of individual fruit wrapping by different materials on the shelf life of Guava cv. Allahabad safeda. Haryana J Hort Sci. 1997; 26(1-2):101-104.