

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2018; 7(4): 1396-1398 Received: 04-05-2018 Accepted: 08-06-2018

Shatis Xaxa

Department of Horticulture, SHUATS, Allahabad, Uttar Pradesh, India

Praveen Choyal

Department of Horticulture, SHUATS, Allahabad, Uttar Pradesh, India

Radhelal Dewangan

Department of Horticulture, SHUATS, Allahabad, Uttar Pradesh, India

Preeti Toppo

Department of Horticulture, SHUATS, Allahabad, Uttar Pradesh, India

Mithlesh Gupta

Department of Biological Science. SHUATS, Allahabad, Uttar Pradesh, India

Sunny Abhisek Tigga

Department of Soil Science, SHUATS, Allahabad, Uttar Pradesh, India

Correspondence Shatis Xaxa Department of Horticulture, SHUATS, Allahabad, Uttar Pradesh, India

Effect of different micronutrients on head quality of broccoli (*Brassica oleracea* var. *Italica*) palam samridhi

Shatis Xaxa, Praveen choyal, Radhelal Dewangan, Preeti Toppo, Mithlesh Gupta and Sunny Abhisek Tigga

Abstract

The experiment will be carried out at the Horticulture Research Farm, Department of Horticulture, Naini Agricultural Institute, SHUATS, Allahabad. The experiment will be conducted in Randomized block design having 15 (genotypes) in three replications. The maximum T.S.S (0 Brix) value T_5 (B + Mn + Zn) 8.23. The lowest T.S.S (0 Brix) value was recorded in T_0 (control) (6.27). The maximum Vitamin c mg/100g T_5 (B + Mn + Zn) 92.34. The lowest Vitamin c mg/100g was recorded in T_0 (control) (77.16). The maximum titrable acidity T_5 (B + Mn + Zn) (0.40). The lowest titrable acidity was recorded in T_0 (control) (0.32).

Keywords: broccoli, micronutrient, quality, growth and yield

Introduction

Broccoli is an edible green plant in the cabbage family whose large flowering head is eaten as a vegetable. Other familiar plants in the species *Brassica oleracea* include Brussels sprouts, cabbage, cauliflower, kale, and kohlrabi. Broccoli is a derivative of cabbage, and was selected for its edible, immature flower heads. Broccoli originated in the Mediterranean region where it has been cultivated since Roman times, but is a relatively new crop to the United States. The first commercial broccoli crop grown in the US was started in California in 1923, but Broccoli did not become a significant commercial crop in the US until after World War II.

India is world's largest producer of vegetables next to China with an annual production around 162.187 (Million tonnes) from 92.05 (Million hectare) of land (NHB, 2012-13). Ascorbic acid content of head was determined by diluting the known volume of juice with 3% metaphosphoric acid and titrating with 2, 6- dichlorophenol-indo-phenol solution (A.O.A.C., 1960) ^[1], till the faint pink colour was obtained. Percentage of total Soluble Solid was determined with the help of Erma Hand Refract meter (range 0-32) in Brix. Averaged and Analysed. Measure the total acid concentration within a food, also called total acidity. Its determined by exhausting titration with a standard volumetric solution of sodium hydroxide in the present of phenolphthalein as indicator. Broccoli has about 14 times more beta-carotene a precursor of vitamin A than commonly cultivated cabbage (Sharma, 2000) ^[8]. It has high amount of vitamin C and significant amount of potassium, folic acid and several phytochemicals.

Materials and Methods

The experiment was carried out at the Horticulture Research Farm, Department of Horticulture, Naini Agricultural Institute, SHUATS, Allahabad U.P. Design and layout of experiment Ten treatments having one variety were laid out in Randomized Block Design (RBD) with three replications. The treatments in each replication were allotted randomly. Ten treatments having one variety were tried in the experimental design. The details of the treatment presented in Table no. 1 & 2.

Allahabad is situated in the agro-climatic zone (Sub-tropical belt) of Uttar Pradesh. The Geographical area falls under sub-tropical climate and is located in between 25.870 North latitude and 81.150 E longitudes at an altitude of 78 meter above the mean sea level (MSL). The area of Allahabad D1strict comes under sub-tropical belt in the south eastern Uttar Pradesh, which experience extremely hot summer and fairly cold winter. The maximum temperature of the location reaches up to 46 °C to 48 °C and seldom falls as low as 40 °C to 50 °C. The Relative humidity ranged between 20 to 94%. The average rainfall in this area is around 850-1100 mm annually.

Table 1: Details of Treatments

Treatment Symbol	Treatment Combination
T_0	Control
T_1	Boron(B) (2.5 kg/ha)
T_2	Molybdenum(Mo)(0.5kg/ha)
T ₃	Manganese(Mn) (3 Kg/ha)
T_4	Boron(2.5kg/ha) + Molybdenum(0.5 kg/ha)
T ₅	Boron (2.5 kg/ha) + Manganese (0.5) + Zinc (2 kg/ha)
T_6	Molybdenum(0.5 kg/ha) + Manganese (3 kg/ha)
T ₇	Boron(2.5 kg/ha) + Molybdenum(0.5 kg/ha) + Manganese (3 kg/ha) + Zinc (2 kg/ha)
T ₈	Boron (2.5 kg/ha) + Zinc (2 kg /ha)
T ₉	Zinc (Zn) (2 kg/ha)

Table 2: Micronutrients combinations

S. No	Micro nutrients	Fertilizers source	% Content	Fertilizer Kg/ha	Micro nutrient	Per plot (mg)	Per plant (mg)
1.	Boron	Borax	10.50	12.50	2.50	300	50.00
2.	Molybdenum	Sodium Molybdenum	39.00	2.00	0.50	80.0	13.33
3.	Manganese	Manganese sulphate	30.50	12.00	3.00	380	63.30
4.	Zinc	Zinc sulphate	23.00	8.00	2.00	450	75.00

Results and Discussion

The results of the analysis of variance for different quantitative characters for 10 treatment and one variety of broccoli. The results indicated that there is highly significant variation among the genotypes for almost all the characters under study. The results of the experiments are presented in (Table 3) separately under this chapter with following heading.

Titrable acidity

The maximum titrable acidity T_5 (B + Mn + Zn) (0.40) followed by T_7 (B + Mo + Mn + Zn) (0.39) and T_6 (Mo + Mn) (0.38). The lowest titrable acidity was recorded in T_0 (control) (0.32). These results were similar recorded by Nadia Gad and Abd El-Moez (2011) [4] and Kumar *et al.*, (2010) [5]

Bhagawati and Choudhary (2010) [5] in cauliflower.

Vitamin-C content in head (mg/100 g)

The maximum Vitamin c mg/100g T_5 (B + Mn + Zn) (92.34) followed by T_6 (Mo + Mn) (85.96) and T_9 (Zn). The lowest Vitamin c mg/100 g was recorded in T_0 (control) (77.16). These results were recorded to closely by Mohamed *et al.* (2011) ^[6] and Nadia Gad (2011) ^[4] in broccoli.

Total Soluble Solid (T.S.S. ⁰ Brix)

The maximum T.S.S (0 Brix) value T_{5} (Bo + Mo + Zn) 8.23 followed by T_{4} (B + Mo) (7.27) and T_{6} (Mo + Mn) (7.17). The lowest T.S.S (0 Brix) value was recorded in T_{0} (control) (6.27). These result similar recorded by Raja Edward and Lyengar, (1987) [3].

Table 3: Effect of different micronutrients on quality parameters of broccoli

Treatment symbol	Treatment combination	Titrable acidity	Vitamin-C (mg/100 g)	T.S.S. (⁰ Brix)
T_0	Control	0.32	77.16	6.27
T_1	В	0.36	80.81	6.43
T_2	Mo	0.37	81.22	7.00
T ₃	Mn	0.35	83.52	6.37
T_4	B + Mo	0.36	84.66	7.27
T ₅	B + Mn + Zn	0.40	92.34	8.23
T_6	Mo + Mn	0.38	85.96	7.17
T ₇	B + Mo + Mn + Zn	0.39	80.84	7.13
T ₈	B + Zn	0.37	81.44	6.33
T ₉	Zn	0.35	85.01	7.47
F-test		S	S	S
$S.E_d(\pm)$		0.016	0.749	0.294
C.D at 5%		0.033	1.574	0.617

Conclusion

The present investigation it is concluded that treatment T5 B (2.5 kg/ha) + Mn (3kg/ha) + Zn (2 kg/ha) was found to be the best treatment combinations in terms of growth, yield, and flower bud quality.

Acknowledgement

The authors are thankful to SHUATS, Allahabad for providing necessary facilities in carrying out the present investigation and Thanks to my friends Praveen choyal, Radhylal dewangan, Preeti Toppo, Mithlesh Gupta and Sunny Abhisek Tigga.

References

- 1. AOAC. Official methods of analysis, 18 Edn. Association of Official Agricultural Chemists, Washington, 1960.
- 2. Abd El-All, HM. Improving growth, yield, quality and sulforaphane content as anticancer of broccoli (*Brassica oleracea* L. var. italica) plants by some fertilization treatments. Middle East Journal of Agriculture Research, 2014; 3(1):13-19.
- 3. Edward Raja M, Lyengar BRV. Micro nutrient studies in vegetable crops. *Ann. Rep.* Indian Rep. Inst. Horticultural Research, Bangalore, 1987, 86.

- 4. Gad Nadia, Abd El-Moez MR. Broccoli growth, yield quantity and quality as affected by cobalt nutrition. Agric. Biol. J. N. Am. 2011; 2(2):226-231.
- 5. Kumar Suresh P, Bhagawati R, Choudhary Vk, Preema Devi, Ronya T. Effect of boron and molybdenum on growth, yield and quality of cauliflower in mid altitude condition of Arunachal Pradesh. Veg. Sci. 2010; 37(2):190-193.
- 6. Mohamed El-Sayed Ahmed, Abdelnaser, Abdelghany Elzaawely. Effect of the Foliar Spraying with Molybdenum and Magnesium on Vegetative Growth and Curd Yields in Cauliflower (*Brassica oleraceae var. botrytis L.*) World Journal of Agricultural Sciences. 2011; 7(2):149-156.
- 7. National Horticulture Board (2012-2013) Indian Horticulture Database, 2012-2013.
- 8. Sharma KC. Influence of integrated nutrient management on yield and economics in broccoli (*Brassica oleracca var. italic*) plant under cold temperate condition. Vegetable Science. 2000; 27(1):62-63.