

# Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com



E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2018; 7(4): 1278-1285 Received: 01-05-2018 Accepted: 05-06-2018

#### Shubhendra Singh Chauhan

Research Associate, Department of Molecular and Cellular Engineering, JIBB, Sam Higginbottom University of Agriculture, Technology and Sciences, Uttar Pradesh, India

#### Shikha Mittal

Research Associate, Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, Pusa, New Delhi, India

#### Pragati Misra

Assistant Professor, Department of Molecular and Cellular Engineering, JIBB, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, India

Corresponding

Shubhendra Singh Chauhan Research Associate, Department of Molecular and Cellular Engineering, JIBB, Sam Higginbottom University of Agriculture, Technology and Sciences, Uttar Pradesh, India

# Genome-wide identification and comparative analysis of HSF genes among Solanaceae members

# Shubhendra Singh Chauhan, Shikha Mittal and Pragati Misra

#### Abstract

HSF family is one of the important transcription factor family involved in heat stress and several other abiotic stresses like drought, cold etc. HSF regulates expression of HSPs and controls high-temperature stress, damage, and biological process. In this study, we identified the HSF genes in different members of Solanaceae family including potato, tomato, brinjal and capsicum. We found and compared their gene structure, evolutionary relationship, motif, domains, duplication events and their time of divergence with the help of different software like MEGA, BLAST, GSDS, PAL2NAL, iTOL, and Circos. In potato, tomato, capsicum and brinjal27, 26, 25 and 23 genes were identified from the Plant Transcription Factor database. In terms of Gene structure of potato as well as tomato, most of the genes retained only 1 intron except 2 genes i.e., one in potato and one in tomato suggesting the gain of intron during the evolutionary process. Comparative phylogenetic analysis of HSF genes revealed 2 major groups with several orthologous and paralogous genes. Time of divergence was also examined to understand evolutionary concepts. Segmental duplications were found to be involved in family expansion and evolution. Our comparative study may be helpful in the understanding of HSF genes in Solanaceae family and evolutionary pathways of HSFs in potato and tomato.

Keywords: potato, tomato, synteny, transcription factor

#### Introduction

Plants have different defensive mechanisms to protect themselves from different biotic and abiotic stresses including salt, drought, high temperature etc. <sup>[1]</sup>. High temperature severely affects the plant growth and development resulting in reduction of crop yield <sup>[2-4]</sup>. The yield of the plants can be enhanced by tolerance to different abiotic stresses. To survivein high temperature there must be a heat shock system available in all species in which different proteins participates <sup>[5]</sup>. Tolerance against different abiotic stresses is directed by plant's ability to express a set of genes whose expression is often regulated by specific transcription factors (TFs). Among different transcription factor families, Heat shock transcription factor (HSF) is one of an important transcription factor family in plants responsible for high-temperature tolerance in plants [6-8]. In plants the size of HSF transcription factor family is large as compared to other organisms <sup>[9]</sup>. HSF regulates the expression of Heat shock proteins <sup>[10]</sup>. HSF's are present at the terminal end in signal transduction pathway and acts as transcriptional regulators which help in activation of genes of different abiotic stresses such as high temperature, drought etc [11]. Heat shock transcription factors binds with heat shock elements (HSE) to regulate the transcription of heat shock proteins (HSP). HSPs are involved in the protection of cells against stress impairment and also involved in folding of proteins <sup>[12-14]</sup>. The involvement of HSF family in high temperature stress as well as in other abiotic stresses in different crops has already been reported in previous studies [15-19].

As heat stress affects the yield of different important food crops including potato, tomato, capsicum and brinjal, so in this study we performed an *in-silico* analysis of the HSF gene family in potato and compared it with the tomato, capsicum and brinjal HSF genes. In this study, comparative analysis was performed among different species of Solanaceae family to have an idea about their expansion and evolutionary history, explore their heat stress responses as elicited by naturally increased temperature.

#### **Materials and Methods**

#### Identification and characterization of HSF genes in Solanaceae family

The HSF family genes in *Solanum tuberosum*, *Solanum lycopersicum*, *Capsicum annum* and *Solanum melongena* were searched and obtained from Plant Transcription Factor Database<sup>[20]</sup>. The protein sequences of all the Solanaceae family members were retrieved using Phytozome Biomart (http://www.phytozome.net). In total, we found 27, 26, 25 and 23

members in potato, tomato, capsicum and brinjal respectively belonging to HSF transcription factor family. All of these significant genes belonging to different species were selected after domain search using pfam database (http://pfam.xfam.org/) with expectation cut-off value of 1.0.

#### **Physiochemical Properties**

To have an idea about the nature of HSF proteins in different species of Solanaceae family, grand average of hydropathy (GRAVY), isoelectronic point (pI), Molecular weight and instability index were predicted by ProtParam tool available on Expert Protein Analysis System (ExPASy, http://web.expasy.org/compute\_pi)<sup>[21]</sup>. The instability index depicts the stability of the protein. If the value of instability index is less than 40 than the protein is stable in nature while if the value is greater than 40 then it indicates unstable nature of protein. The GRAVY score indicates polar or non-polar nature of the protein Positive GRAVY score infers hydrophobic nature of protein while negative GRAVY score suggests hydrophilic nature.

# Chromosomal distribution and duplication events analysis

Orthologs for all 4 species i.e., *S. tuberosum*, *S. lycopersicum*, *C. annum* and *S. melongena* were identified using BLAST search. Tandem and segmental duplication events were also identified for *S. tubersoum* species using BLAST. Synonymous and non-synonymous substitutions between orthologs and paralogs were also calculated using PAL2NAL server while divergence time was calculated using T=Ks/2 $\pi$  where  $\pi = 6.5 \times 10^{-9}$ .

### Gene structure and motif prediction

To anlayse intron exon structure of potato and tomato HSF genes, coding and genomic sequences of all the genes were retrieved usingEnsembl genomes. Capsicum and brinjal were not used for gene structure analysis as there genomic sequences were not available. Gene Structure Display Server (GSDS server, http://gsds.cbi.pku.edu.cn) <sup>[22]</sup> server was used for gene structure illustration. To find the best 5 motifs among *S. tuberosum, S.lycopersicum, C. annum* and *S. melongena,* Multiple maximization for Motif Elicitation analysis tool (MEME, http://meme.sdsc.edu, v4.9.0) <sup>[23]</sup> program was used The MEME suite was analysed with the following parameters, maximum number of motifs=5, motif width=12 to 60 and E-value < 0.01.

## **Phylogenetic analysis**

To generate the phylogentic trees HSF transcription factor family genes, multiple sequence alignment of the genes was done using ClustalW. Phylogenetic tree was built by using Neighbour-Joining method with 1000 rapid bootstrap replicates with the help of MEGA v6.06 <sup>[24]</sup>. In neighbour joining analysis, pairwise deletion and poisson correction options were used. The developed phylogenetic tree was visualized using iTOL (http://itol.embl.de/) software.

# Synteny analysis

The synteny between Solanum *tuberosum* and Solanum *lycopersicum* was identified using BLAST search. A cut-off bit score of 75 and E-value less than 1e-05 were considered as optimum for BLAST analysis. The synteny among potato and tomato was visualised using Circos v0.63software. (http://circos.ca) <sup>[25]</sup>.

# **Result and Discussion**

# Identification and physiochemical properties of HSF gene family

Genome wide analysis led to the identification of 27, 24, 25 and 23 significant HSF genes in potato, tomato, capsicum and brinjal. In former studies, 21, 25, 28, 16, 25 HSF genes were found in Arabidopsis, rice, populous, Medicago and maize <sup>[15,</sup> <sup>26-28]</sup>. The physiochemical nature of these proteins was studied to understand the nature of proteins. Out of 4 species, highest molecular weight was identified in tomato protein i.e., SIHSF14 while minimum in brinjal species (SmeHSF21). Positive hydropathy score indicates insoluble nature of proteins while negative GRAVY score suggests soluble nature of protein <sup>[29]</sup>. According to our study, all the proteins of Solanaceae family belonging to HSF transcription factor have negative hydropathy score suggesting soluble nature of proteins. Isoelectronic point (pI) is the point at which net charge of the protein is zero and the protein is least soluble at this point. In terms of pI, among 4 species i.e., S. tuberosum, S. lycopersicum, C. annum and S. melongena, minimum pI was found in SmeHSF6 and maximum in SmeHSF7. In previous studies also, wide range of isoelectronic point has been noticed in cucumber, soybean etc. <sup>[5, 30]</sup>. Protein pI is having an important role in finding out the pH dependent characteristics of a protein <sup>[31]</sup>. To analyse whether the protein is stable or unstable in nature, instability index was calculated. All the proteins were found to be unstable in nature except 8 proteins (StHSF19, SIHSF11, SIHSF5, CaHSF11, CaHSF, SmeHSF21, SmeHSF1 and SmeHSF23). Instability index greater than 40 represents unstable nature of proteins while instability index less than 40 suggests stable nature of proteins <sup>[32]</sup> (Table 1).

# Chromosomal distribution of HSF genes

To examine the association between genetic divergence within HSF gene family and duplication in potato and tomato, HSF genes were mapped on their chromosomes in potato and tomato species. The distribution of HSF genes was not uniform in potato as well as in tomato. Some chromosome and chromosomal regions have high density of genes while some regions were devoid of genes. The HSF family genes were unevenly mapped on 10 chromosomes of potato as well as tomato. Chromosome 5 and chromosome 1 lack the HSF gene in tomato as well as potato. Most of the HSF genes lie only on the short arm of the chromosome. In potato, chromosome 9 has highest number of genes i.e., 5 while in tomato maximum number of genes were found on chromosome 2 i.e., 5. In various previous studies it has been observed that the HSF genes were distributed unevenly on their chromosomes. In soybean also, the HSF genes were unevenly distributed on 15 chromosomes out of 20 chromosomes <sup>[5]</sup>. Gene duplication is a process in which new genes are formed which disperses in the genome <sup>[33]</sup>. In Solanum tuberosum, we found only 3 tandem duplication and 1 segmental duplication while in case of Solanum lycopersicum only 2 segmental duplication were obtained but no tandem duplication were identified.

### Gene structure

The exon and intron structure of the HSF genes of potato and tomato was analyzed to understand the structural components of the HSF genes. It was observed that most of the HSF genes in tomato and potato retain only one intron. In potato, out of 27 genes, 26 genes had only one intron while one gene (StHSF20) had 2 introns. However, in case of tomato also all

the genes except SIHSF11 (2 intron) were having only one intron. Genes having 2 introns represent gain of introns during evolutionary process. It was depicted from previous studies of cucumber and soybean that mostly HSF genes have only 1 intron (Figure 1). In soybean gene structure analysis, it was noticed that soybean HSF genes had one intron only except one gene <sup>[5]</sup> while in cucumber 2 genes had 2 introns and one gene had 3 introns <sup>[30]</sup>, and in chickpea only three genes had 2 introns <sup>[34]</sup>.



Fig 1: Gene structure of *Solanum tuberosum* and *Solanum lycopersicum* species identified using GSDS server

# Phylogenetic analysis

To analyze the evolutionary relationship among potato, tomato, capsicum and brinjal HSF genes, a phylogenetic tree was generated using MEGA with 1000 replicates of bootstrapping. In our phylogenetic tree, two major groups of HSF genes were found with several paralogous as well as orthologous genes. All the potato genes were distributed in one group only except two genes, StHSF4 and StHSF18. While rest of the species were evenly distributed in both the groups. Each group possesses potato as well as tomato genes (Figure 2). In previous study of chickpea, 4 groups were found in phylogenetic tree which is same as our results <sup>[34]</sup>. Similary in arabidopsis and rice, 3 groups were found in the phylogenetic tree of HSF genes <sup>[15]</sup>. Development of phylogenetic trees would serve as the foundation which will help us to better know the evolution of cellular pathways, macromolecular machines and other emergent properties of early life [35].

Time of divergence was identified for both paralogous as well as orthologous gene pairs. While in case of potato, time of divergence of tandem and segmental duplications was also

observed. Divergence time was estimated by examining ratio of synonymous (Ks) and non-synonymous (Ka) substitution. Among duplication events, we found 9 segmentally duplicated pairs while 3 tandem duplicated pairs in potato. More duplication events may be the reason for family expansion in potato <sup>[36]</sup>. In case of tandem duplicated events, Ka/Ks varied from 0.01 to 0.39 with a mean value of 0.14 while in segmentally duplicated events, Ka/Ks varied from 0.01 to 0.24 with a mean value of 0.09. Both tandem and segmentally duplicated pairs in potato were found to be diverged 1843.91 and 1850.72 million years ago (mya). In case of ortholog pairs of potato-tomato, potato-brinjal and potato-capsicum, Ka/Ks ranged from 0.02 to 0.67, 0.01 to 0.62 and 0.08 to 0.52 with an average value of 0.25, 0.23 and 0.27 respectively. Since Ka/Ks ratio for all the ortholog pairs were found to be less than 1, it is assumed that they had undergone natural selection <sup>[37]</sup>. Potato-tomato have been estimated to occur about 148.82 mya, Potato-brinjal about 589.03 mya whereas Potato-capsicum about 49.95mya (Supplementary Table 1). Among all these species of Solanaceae family, potato-brinjal were diverged earliest while potato-capsicum later.



Fig 2: Phylogenetic tree of Solanum tuberosum, Solanum lycopersicum, Capsicum annum and Solanum melongena generated using MEGA software with 1000 bootstrapping replicates. Yellow, Red, green and purple color represents S. tuberosum, S. lycopersicum, C.annum and S. melongena species

| Table 1: List of HSF genes identified in Potato, Tomato, Capsicum and Brinjal from Plant Transcription Factor Database and | d their |
|----------------------------------------------------------------------------------------------------------------------------|---------|
| physiochemical properties.                                                                                                 |         |

| Species                    | Gene Name | Gene ID              | Chr | Length | MW       | pI   | GRAVY  | Instability index |
|----------------------------|-----------|----------------------|-----|--------|----------|------|--------|-------------------|
|                            | StHSF1    | PGSC0003DMG400003160 | 3   | 492    | 54318.75 | 4.85 | -0.44  | 59.56             |
|                            | StHSF2    | PGSC0003DMG400014811 | 8   | 498    | 55721.29 | 5.01 | -0.671 | 63.7              |
|                            | StHSF3    | PGSC0003DMG400027036 | 6   | 481    | 54422.23 | 5.17 | -0.578 | 54.79             |
|                            | StHSF4    | PGSC0003DMG400008223 | 8   | 353    | 40709.7  | 4.92 | -0.659 | 56.69             |
|                            | StHSF5    | PGSC0003DMG401002683 | 9   | 480    | 52913.17 | 4.81 | -0.45  | 55.73             |
| Potato (Solanum tuberosum) | StHSF6    | PGSC0003DMG401027812 | 3   | 403    | 46213.59 | 5.16 | -0.77  | 44.3              |
|                            | StHSF7    | PGSC0003DMG400017334 | 7   | 412    | 47018.15 | 5.36 | -0.784 | 54.08             |
|                            | StHSF8    | PGSC0003DMG400028414 | 2   | 408    | 46220.42 | 5.23 | -0.764 | 46.07             |
|                            | StHSF9    | PGSC0003DMG400004662 | 12  | 478    | 53425.19 | 5.48 | -0.699 | 57.97             |
|                            | StHSF10   | PGSC0003DMG400006447 | 9   | 362    | 42263.33 | 5.46 | -0.931 | 45.46             |
|                            | StHSF11   | PGSC0003DMG400016270 | 6   | 344    | 39764.05 | 5.03 | -0.845 | 58.27             |

|                                    | StHSF12  | PGSC0003DMG402019343    | 9  | 364      | 42034.19 | 5.53  | -0.784 | 54.59  |
|------------------------------------|----------|-------------------------|----|----------|----------|-------|--------|--------|
|                                    | StHSF13  | PGSC0003DMG401019343    | 9  | 360      | 41480 55 | 53    | -0.716 | 48.68  |
|                                    | StHSF14  | PGSC0003DMG400017484    | 9  | 394      | 45539.28 | 4 71  | -0.593 | 56.07  |
|                                    | StHSF15  | PGSC0003DMG400041361    | 2  | 411      | 46954.43 | 4.92  | -0.809 | 47.6   |
|                                    | StUSF15  | PGSC0003DMG400041301    | 11 | 246      | 28707.88 | 9.3   | 0.651  | 47.63  |
|                                    | SHISF10  | PCSC0003DMC400043234    | 2  | 240      | 20/07.00 | 9.5   | -0.031 | 47.03  |
|                                    | SINSF1/  | PGSC0003DMG400028410    | 2  | 261      | 38430.02 | 0.39  | -0.909 | 46.34  |
|                                    | StHSF18  | PGSC0003DMG400032793    | /  | 361      | 41/61.13 | 5.28  | -0.825 | 56.45  |
|                                    | StHSF19  | PGSC0003DMG401004023    | 2  | 302      | 33288.23 | 5.75  | -0.754 | 35.72  |
|                                    | StHSF20  | PGSC0003DMG400014323    | 3  | 260      | 29405.34 | 4.78  | -0.893 | 60.4   |
|                                    | StHSF21  | PGSC0003DMG400003053    | 8  | 317      | 35023.95 | 4.93  | -0.472 | 54.35  |
|                                    | StHSF22  | PGSC0003DMG400027283    | 4  | 247      | 28695.62 | 8.68  | -0.754 | 60.24  |
|                                    | StHSF23  | PGSC0003DMG401008167    | 10 | 244      | 28376.07 | 6.13  | -0.857 | 48.05  |
|                                    | StHSF24  | PGSC0003DMG400007962    | 4  | 372      | 42367.2  | 7.76  | -0.714 | 52.8   |
|                                    | StHSF25  | PGSC0003DMG400034428    | 11 | 245      | 29388.51 | 7.31  | -0.689 | 48.32  |
|                                    | StHSF26  | PGSC0003DMG400029718    | 2  | 201      | 23853.47 | 9.58  | -0.845 | 49.15  |
|                                    | StHSF27  | PGSC0003DMG400000380    | 12 | 368      | 40974.02 | 5.86  | -0.614 | 66.82  |
|                                    | SIHSF1   | Solvc02g079180.1        | 2  | 415      | 47140.6  | 4.950 | -0.77  | 45.090 |
|                                    | SIHSF2   | Solvc02g072000.2        | 2  | 409      | 46168.5  | 5.23  | -0.726 | 50.950 |
|                                    | SIHSE3   | Solvc02g072060 1        | 2  | 340      | 38413.1  | 7.63  | -0.886 | 44 570 |
|                                    | SIHSF4   | Solyc02g072000.1        | 2  | 206      | 24239.7  | 9 390 | -0.873 | 46.080 |
|                                    | SILISI 4 | Solyc02g078340.2        | 2  | 200      | 24237.7  | 5 750 | 0.746  | 37.030 |
|                                    |          | Solyc02g090820.2        | 2  | 402      | 16090.2  | 5.750 | -0.740 | 37.030 |
|                                    | 510560   | <u>Solycosg006000.2</u> | 2  | 402      | 40080.5  | 5.550 | -0.798 | 44.330 |
|                                    | SIHSF/   | Solyc03g026020.2        | 3  | 339      | 5/38/.6  | 5.340 | -0.74  | 68.070 |
|                                    | SIHSF8   | Solyc03g097120.2        | 3  | 492      | 54029.6  | 5.070 | -0.408 | 55.160 |
|                                    | SIHSF9   | Solyc04g016000.2        | 4  | 238      | 27566.5  | 8.87  | -0.701 | 56.270 |
|                                    | SIHSF10  | Solyc04g078770.2        | 4  | 361      | 40928.7  | 7.720 | -0.65  | 54.990 |
|                                    | SIHSF11  | Solyc06g053960.2        | 6  | 143      | 16643.6  | 9.440 | -0.796 | 31.890 |
| Tomato (Solanum lyconersicum)      | SIHSF12  | Solyc06g072750.2        | 6  | 483      | 54336    | 5.320 | -0.615 | 53.810 |
| i onnato (Sounnant Goopersteam)    | SIHSF13  | Solyc07g040680.2        | 7  | 357      | 40871.2  | 5.330 | -0.758 | 57.330 |
|                                    | SIHSF14  | Solyc08g005170.2        | 8  | 528      | 57700.7  | 5.160 | -0.569 | 57.670 |
|                                    | SIHSF15  | Solyc08g076590.2        | 8  | 491      | 55016.7  | 5.160 | -0.672 | 61.980 |
|                                    | SIHSF16  | Solyc08g080540.2        | 8  | 326      | 35289.3  | 4.990 | -0.433 | 52.330 |
|                                    | SIHSF17  | Solyc09g009100.2        | 9  | 510      | 56098.4  | 4.82  | -0.546 | 54.900 |
|                                    | SIHSF18  | Solyc09g059520.2        | 9  | 390      | 44921.4  | 4.680 | -0.619 | 52.430 |
|                                    | SIHSF19  | Solyc09g065660.2        | 9  | 373      | 42442.4  | 5.280 | -0.823 | 58.960 |
|                                    | SIHSF20  | Solyc09g082670.2        | 9  | 357      | 41757.6  | 5.38  | -0.963 | 43.540 |
|                                    | SIHSF21  | Solvc11g064990.1        | 11 | 252      | 29828.8  | 7.290 | -0.743 | 51.990 |
|                                    | SIHSF22  | Solvc10g079380.1        | 10 | 256      | 29916.8  | 7.590 | -0.868 | 50.780 |
|                                    | SIHSF23  | Solvc12g007070.1        | 12 | 370      | 41173.2  | 6.050 | -0.627 | 65.110 |
|                                    | SIHSE24  | Solvc12g098520.1        | 12 | 479      | 53375.1  | 5.400 | -0.688 | 58,510 |
|                                    | CAHSE1   | CA00g45390              | _  | 258      | 30088 35 | 9 23  | -0.763 | 43.78  |
|                                    | CAHSE2   | CA00g63000              | _  | 368      | 42587.3  | 5.52  | -0.792 | 46 75  |
|                                    | CAHSE3   | CA00g71530              | _  | 326      | 42307.3  | 5.52  | -0.501 | 50.64  |
|                                    | CAHSE4   | CA01g03100              |    | 281      |          |       | -0.531 | /0.18  |
|                                    | CAHSE5   | CA01g07540              |    | <u> </u> | 55081 74 | 1 78  | -0.531 | 67.81  |
|                                    | CAUSE6   | CA01g30350              | _  | 473      | 52802.00 | 4.78  | 0.703  | 62.18  |
|                                    | CAUSE7   | CA01g50550              | _  | 204      | 22605.67 | 4.91  | 0.703  | 24.60  |
|                                    |          | CA02g11050              | _  | 404      | 15711 76 | 5.1   | -0.722 | 34.09  |
|                                    | CAUSEO   | CA02g13280              | _  | 209      | 43744.70 | 5.05  | -0.769 | 44.00  |
|                                    | CAUSE10  | CA02g15520              | _  | 328      | 37040.02 | 0.38  | -0.823 | 43.94  |
|                                    | CAHSF10  | CA02g16000              | -  | 201      | 23373.88 | 9.15  | -0.007 | 00.09  |
|                                    | CAHSFII  | CA02g10840              | -  | 380      | 43535.02 | 5.02  | -0.62  | 34.04  |
|                                    | CAHSF12  | CA03g06850              | -  | 362      | 42296.21 | 5.28  | -0.954 | 43.4   |
| Capsicum ( <i>Capsicum annum</i> ) | CAHSF13  | CA03g11650              | -  | 359      | 41131.07 | 5.26  | -0.817 | 55.26  |
|                                    | CAHSF14  | CA03g16300              | -  | 326      | 363/0.63 | 5.09  | -0.648 | 55.44  |
|                                    | CAHSF15  | CA03g21660              | -  | 505      | 56063.87 | 5.15  | -0.529 | 54.9   |
|                                    | CAHSF16  | CA04g01070              | -  | 402      | 45810.7  | 5.21  | -0.847 | 47.71  |
|                                    | CAHSF17  | CA04g18550              | -  | 379      | 42921.82 | 7.34  | -0.7   | 52.88  |
|                                    | CAHSF18  | CA05g00840              |    | 234      | 27416.14 | 9.19  | -0.842 | 53.44  |
|                                    | CAHSF19  | CA06g08710              | —  | 335      | 38634.04 | 4.8   | -0.79  | 53.66  |
|                                    | CAHSF20  | CA07g15920              | _  | 432      | 49296.72 | 5.3   | -0.752 | 55.96  |
|                                    | CAHSF21  | CA08g05000              | _  | 362      | 41187.23 | 4.78  | -0.573 | 55.72  |
|                                    | CAHSF22  | CA09g01450              |    | 449      | 50282.17 | 4.85  | -0.567 | 48.02  |
|                                    | CAHSF23  | CA09g11190              |    | 401      | 46107.26 | 4.83  | -0.537 | 49.09  |
|                                    | CAHSF24  | CA10g20440              |    | 244      | 28281.86 | 8.22  | -0.906 | 57.11  |
|                                    | CAHSF25  | CA12g20590              | _  | 453      | 50924.12 | 5.5   | -0.809 | 55.3   |
|                                    | SmeHSF1  | Sme2.5_00010.1_g00004.1 | _  | 481      | 53575.07 | 5.24  | -0.673 | 30.35  |
|                                    | SmeHSF2  | Sme2.5_00023.1_g00025.1 | -  | 410      | 47368.93 | 5.29  | -0.547 | 50.08  |
| Brinjal (Solanum melongena)        | SmeHSF3  | Sme2.5_00065.1_g00020.1 | _  | 357      | 41699.38 | 5.15  | -0.929 | 45.44  |
|                                    | SmeHSF4  | Sme2.5_00159.1_g00006.1 | _  | 213      | 24620.01 | 9.44  | -0.791 | 52.04  |
|                                    |          | ~                       |    |          |          |       |        |        |

| SmeHSF5  | Sme2.5_00204.1_g00007.1 | _ | 478 | 53808.7  | 5.88 | -0.614 | 51.96 |
|----------|-------------------------|---|-----|----------|------|--------|-------|
| SmeHSF6  | Sme2.5_00292.1_g00007.1 | _ | 494 | 55078.34 | 4.6  | -0.58  | 53.86 |
| SmeHSF7  | Sme2.5_00579.1_g00002.1 | _ | 335 | 37998.48 | 9.64 | -0.506 | 46.41 |
| SmeHSF8  | Sme2.5_01013.1_g00005.1 | _ | 403 | 46036.2  | 5.15 | -0.78  | 42.59 |
| SmeHSF9  | Sme2.5_01029.1_g00008.1 | — | 357 | 40642.61 | 7.73 | -0.604 | 60.84 |
| SmeHSF10 | Sme2.5_01314.1_g00005.1 | — | 421 | 48362.75 | 5.35 | -0.74  | 54.15 |
| SmeHSF11 | Sme2.5_02334.1_g00004.1 | — | 496 | 54837.58 | 5.13 | -0.482 | 52.58 |
| SmeHSF12 | Sme2.5_02712.1_g00007.1 | _ | 331 | 36210.51 | 5.18 | -0.437 | 55.45 |
| SmeHSF13 | Sme2.5_03412.1_g00012.1 | — | 317 | 36775.39 | 8.99 | -0.743 | 41.31 |
| SmeHSF14 | Sme2.5_04149.1_g00004.1 | — | 343 | 39841.03 | 5.99 | -0.793 | 59.73 |
| SmeHSF15 | Sme2.5_04312.1_g00005.1 | — | 340 | 38481.09 | 5.93 | -0.856 | 48.87 |
| SmeHSF16 | Sme2.5_04312.1_g00009.1 | — | 377 | 43012.76 | 5.14 | -0.76  | 47.45 |
| SmeHSF17 | Sme2.5_04829.1_g00004.1 | — | 352 | 39421.21 | 6.14 | -0.649 | 68.54 |
| SmeHSF18 | Sme2.5_08000.1_g00008.1 | — | 324 | 37931.68 | 5.5  | -0.827 | 47.19 |
| SmeHSF19 | Sme2.5_08951.1_g00003.1 | — | 374 | 43271.78 | 4.71 | -0.62  | 58.33 |
| SmeHSF20 | Sme2.5_09846.1_g00002.1 | — | 475 | 53307.86 | 5.51 | -0.777 | 57.57 |
| SmeHSF21 | Sme2.5_10740.1_g00006.1 | — | 111 | 12190.37 | 7.81 | -0.007 | 25.68 |
| SmeHSF22 | Sme2.5_13301.1_g00001.1 | — | 341 | 38297.33 | 6.35 | -0.624 | 60.33 |
| SmeHSF23 | Sme2.5_31683.1_g00001.1 | — | 167 | 19252.35 | 5.89 | -1.141 | 36.49 |
|          |                         |   |     |          |      |        |       |

#### **Motif Prediction**

To predict the amino acid motifs conserved among HSF genes of Solanaceae family, we used MEME software. 5 different types of motifs were identified (Table 2). Among the 5 identified motifs, motif 1 and motif 2 were found to be conserved in equal number of proteins i.e., 97 while motif 4 was least conserved. In most of the proteins belonging to Solanaceae family, motif 1 and motif 3 were found to be conserved on N-terminal, motif 4 and motif 5 on C-terminal while motif 2 in central position. Among all the amino acids, highly frequent amino acid was serine followed by Glutamic acid and leucine. Whereas least frequent amino acid observed was cysteine. Previous study on soybean also depicted 5 conserved motifs among Soybean HSF proteins <sup>[5]</sup>.

 Table 2: List of 5 best identified motifs in HSF genes of Solanaceae family using MEME software.

| Motif | Width | Best Possible Match          |
|-------|-------|------------------------------|
| 1     | 12    | IVSWNRDGNSFIVWDPPEFARDLLPKYF |
| 1     | 45    | KHNNFSSFVRQLNTY              |
| 2     | 16    | FRKIDPDRWEFANEWF             |
| 3     | 22    | HGNGPPPFLTKTYEMVDDPSTD       |
| 4     | 12    | LMMELVKLRQHQQATDHQMQTMTERL   |
| 4     | 45    | QAMEQRQQQMMSFLAKA            |
| 5     | 22    | LRGQKHLLCNIHRRKPWHSHCH       |

#### Synteny analysis

The synteny analysis in potato and tomato was conducted to determine whether this information might provide more functional insight. In this analysis, brinjal and capsicum were not considered because of the unavailability of their chromosomal information. To find synteny between the potato and tomato genes, potato HSF sequences were used as query against the tomato database while performing BLASTN for identification of orthologs with more than 80% silmilarity and E-value less than 1e-05. To confirm the potential orthologs, reciprocal BLAST was performed. A total of 16 genes of tomato showed syntenic relationship with potato HSF genes. Solanum tuberosum shows maximum synteny with chromosome 9 of Solanum lycopersicum followed by chromosome 2 and chromosome 3 (Figure 3). The comparative study of potato and tomato genomes resulted into syntenic blocks that reveal conserved features <sup>[38]</sup>. This synteny analysis revealed the evolutionary and functional links between genes in potato and tomato.

These findings will help to get the concepts of responses of HSF in stress condition and the whole genomic information of HSF family. This data will facilitate selecting candidate genes for stress condition and further functional and comparative characterization.



Fig 3: Representation of syntenic relationship among different chromosomes of *Solanum tuberosum* and *Solanum lycopersicum* 

### Conclusion

This study is structural characterization of the HSF genes in different members of Solanaceae family. Gene structure distribution of HSF genes revealed that the most of the genes have only one intron except few genes. Segmental duplications were found to be prominent in expansion of gene family as compared to tandem duplications. Potato-capsicum was found to be less divergent as compared to potato-tomato and potato-brinjal. These findings will help to get the {Bibliography} concepts of responses of HSF in stress condition and the whole genomic information of HSF family. This data will facilitate selecting candidate genes for stress condition and further functional and comparative characterization. These genes will be helpful for production of heat tolerant potato varieties.

Supplementary Table 1(A): Divergence time calculated for segmentally duplicated orthologous gene pairs in potato.

| Gene ID 1 | Gene ID 2 | dS      | dN     | dN/dS  | Time of divergence (mya) |
|-----------|-----------|---------|--------|--------|--------------------------|
| StHSF22   | StHSF23   | 0.9169  | 0.1409 | 0.1537 | 70.53                    |
| StHSF25   | StHSF9    | 53.5821 | 0.6919 | 0.0129 | 4121.7                   |
| StHSF8    | StHSF24   | 34.5718 | 0.8019 | 0.0232 | 2659.37                  |
| StHSF6    | StHSF8    | 0.6203  | 0.1486 | 0.2395 | 47.72                    |
| StHSF1    | StHSF24   | 57.04   | 0.6988 | 0.0123 | 4387.69                  |
| StHSF25   | StHSF8    | 57.0397 | 0.6989 | 0.0123 | 4387.67                  |
| StHSF19   | StHSF20   | 4.2902  | 0.5811 | 0.1354 | 330.02                   |
| StHSF20   | StHSF21   | 3.2839  | 0.3504 | 0.1067 | 252.61                   |
| StHSF18   | StHSF22   | 5.1888  | 0.8219 | 0.1584 | 399.14                   |
|           | Average   | 24.06   | 0.55   | 0.09   | 1850.72                  |

Supplementary Table 1(B): Divergence time calculated for tandem duplicated pairs in potato.

| Gene ID 1 | Gene ID 2 | dS    | dN   | dN/dS | Time of divergence (mya) |
|-----------|-----------|-------|------|-------|--------------------------|
| StHSF13   | StHSF12   | 0.05  | 0.02 | 0.39  | 3.68                     |
| StHSF26   | StHSF15   | 56.44 | 0.69 | 0.01  | 4341.21                  |
| StHSF24   | StHSF22   | 15.43 | 0.52 | 0.03  | 1186.85                  |
|           | Average   | 23.97 | 0.41 | 0.14  | 1843.91                  |

Supplementary Table 1(C): Divergence time calculated for orthologous pairs between poatato and tomato

| Gene ID 1 | Gene ID 2 | dS      | dN     | dN/dS  | Time of divergence (mya) |
|-----------|-----------|---------|--------|--------|--------------------------|
| SIHSF1    | StHSF15   | 0.0934  | 0.0196 | 0.2104 | 7.18                     |
| SIHSF10   | StHSF24   | 0.1938  | 0.0305 | 0.1571 | 14.91                    |
| SIHSF11   | StHSF11   | 0.1555  | 0.0583 | 0.375  | 11.96                    |
| SIHSF12   | StHSF3    | 0.0597  | 0.02   | 0.3356 | 4.59                     |
| SIHSF13   | StHSF18   | 0.1891  | 0.0275 | 0.1453 | 14.55                    |
| SIHSF14   | StHSF7    | 4.8515  | 0.6275 | 0.1293 | 373.19                   |
| SIHSF15   | StHSF2    | 0.1     | 0.0459 | 0.459  | 7.69                     |
| SIHSF16   | StHSF20   | 2.5159  | 0.3503 | 0.1392 | 193.53                   |
| SIHSF16   | StHSF21   | 0.1684  | 0.0555 | 0.3299 | 12.95                    |
| SIHSF17   | StHSF5    | 0.0866  | 0.0332 | 0.383  | 6.66                     |
| SIHSF18   | StHSF14   | 0.0903  | 0.012  | 0.1325 | 6.95                     |
| SIHSF19   | StHSF12   | 0.1692  | 0.0324 | 0.1917 | 13.02                    |
| SIHSF19   | StHSF13   | 0.1398  | 0.0358 | 0.2561 | 10.75                    |
| SIHSF2    | StHSF8    | 0.1416  | 0.0171 | 0.1209 | 10.89                    |
| SIHSF20   | StHSF10   | 0.0795  | 0.0176 | 0.221  | 6.12                     |
| SIHSF21   | StHSF25   | 0.0548  | 0.0365 | 0.6654 | 4.22                     |
| SIHSF22   | StHSF23   | 0.071   | 0.0291 | 0.4097 | 5.46                     |
| SIHSF23   | StHSF27   | 0.1834  | 0.0156 | 0.0852 | 14.11                    |
| SIHSF24   | StHSF9    | 0.0499  | 0.0145 | 0.2898 | 3.84                     |
| SIHSF3    | StHSF17   | 0.0659  | 0.0179 | 0.2708 | 5.07                     |
| SIHSF4    | StHSF26   | 0.0919  | 0.0229 | 0.2488 | 7.07                     |
| SIHSF5    | StHSF19   | 0.0985  | 0.0106 | 0.1075 | 7.58                     |
| SIHSF5    | StHSF20   | 3.7211  | 0.5652 | 0.1519 | 286.24                   |
| SIHSF6    | StHSF6    | 0.0652  | 0.0125 | 0.1916 | 5.02                     |
| SIHSF7    | StHSF20   | 0.1479  | 0.059  | 0.3991 | 11.38                    |
| SIHSF8    | StHSF1    | 0.0995  | 0.0303 | 0.3047 | 7.65                     |
| SIHSF9    | StHSF22   | 0.1019  | 0.0196 | 0.1928 | 7.84                     |
| SIHSF9    | StHSF18   | 40.3869 | 0.7565 | 0.0187 | 3106.68                  |
|           | Average   | 1.93    | 0.11   | 0.25   | 148.82                   |

Supplementary Table 1(D): Divergence time calculated for orthologous pairs between poatato and brinjal

| Gene ID 1 | Gene ID 2 | dS   | dN   | dN/dS | Time of divergence (mya) |
|-----------|-----------|------|------|-------|--------------------------|
| SmeHSF1   | StHSF19   | 0.29 | 0.04 | 0.15  | 22.1                     |
| SmeHSF10  | StHSF7    | 0.34 | 0.07 | 0.22  | 26.12                    |
| SmeHSF11  | StHSF1    | 0.17 | 0.06 | 0.38  | 13.05                    |
| SmeHSF12  | StHSF20   | 2.32 | 0.34 | 0.15  | 178.78                   |
| SmeHSF12  | StHSF21   | 0.37 | 0.07 | 0.2   | 28.45                    |
| SmeHSF13  | StHSF16   | 0.23 | 0.07 | 0.32  | 17.45                    |
| SmeHSF14  | StHSF13   | 6.86 | 0.76 | 0.11  | 527.44                   |
| SmeHSF14  | StHSF12   | 0.34 | 0.07 | 0.21  | 26.34                    |
| SmeHSF15  | StHSF17   | 0.18 | 0.04 | 0.21  | 13.46                    |
| SmeHSF16  | StHSF8    | 0.15 | 0.05 | 0.35  | 11.68                    |
| SmeHSF17  | StHSF27   | 0.28 | 0.04 | 0.13  | 21.43                    |
| SmeHSF19  | StHSF14   | 0.15 | 0.09 | 0.62  | 11.52                    |
| SmeHSF2   | StHSF18   | 0.58 | 0.07 | 0.12  | 44.98                    |

| SmeHSF20 | StHSF9  | 0.17  | 0.03 | 0.19 | 13      |
|----------|---------|-------|------|------|---------|
| SmeHSF21 | StHSF2  | 0.68  | 0.23 | 0.34 | 52.5    |
| SmeHSF22 | StHSF20 | 0.45  | 0.15 | 0.33 | 34.45   |
| SmeHSF23 | StHSF5  | 6.56  | 0.77 | 0.12 | 504.72  |
| SmeHSF23 | StHSF8  | 0.17  | 0.06 | 0.35 | 13.38   |
| SmeHSF23 | StHSF6  | 0.59  | 0.17 | 0.29 | 45.05   |
| SmeHSF3  | StHSF10 | 0.11  | 0.06 | 0.49 | 8.77    |
| SmeHSF4  | StHSF18 | 24.2  | 0.8  | 0.03 | 1861.69 |
| SmeHSF4  | StHSF22 | 0.28  | 0.09 | 0.32 | 21.45   |
| SmeHSF5  | StHSF3  | 0.14  | 0.06 | 0.44 | 11.13   |
| SmeHSF6  | StHSF5  | 0.17  | 0.07 | 0.4  | 12.9    |
| SmeHSF7  | StHSF25 | 60.46 | 0.75 | 0.01 | 4651.13 |
| SmeHSF7  | StHSF1  | 38.11 | 0.72 | 0.02 | 2931.32 |
| SmeHSF7  | StHSF24 | 6.07  | 0.9  | 0.15 | 467.2   |
| SmeHSF7  | StHSF3  | 58.76 | 0.66 | 0.01 | 4520.22 |
| SmeHSF7  | StHSF9  | 27.63 | 0.66 | 0.02 | 2125.44 |
| SmeHSF8  | StHSF6  | 0.15  | 0.05 | 0.3  | 11.62   |
| SmeHSF9  | StHSF24 | 0.41  | 0.03 | 0.08 | 31.28   |
|          | Average | 7.66  | 0.26 | 0.23 | 589.03  |

Supplementary Table 1(E): Divergence time calculated for orthologous pairs between poatato and capsicum

| Gene ID 1 | Gene ID 2 | dS   | dN   | dN/dS | Time of divergence (mya) |
|-----------|-----------|------|------|-------|--------------------------|
| CAHSF1    | StHSF16   | 0.39 | 0.12 | 0.32  | 29.62                    |
| CAHSF10   | StHSF26   | 0.24 | 0.1  | 0.43  | 18.52                    |
| CAHSF12   | StHSF10   | 0.13 | 0.07 | 0.52  | 9.9                      |
| CAHSF13   | StHSF13   | 0.35 | 0.08 | 0.22  | 27.14                    |
| CAHSF13   | StHSF12   | 0.34 | 0.08 | 0.22  | 26.45                    |
| CAHSF14   | StHSF8    | 6.48 | 0.76 | 0.12  | 498.53                   |
| CAHSF14   | StHSF20   | 0.44 | 0.14 | 0.31  | 33.65                    |
| CAHSF15   | StHSF1    | 0.19 | 0.08 | 0.4   | 14.88                    |
| CAHSF16   | StHSF6    | 0.17 | 0.07 | 0.4   | 12.95                    |
| CAHSF17   | StHSF24   | 0.7  | 0.05 | 0.08  | 53.81                    |
| CAHSF2    | StHSF18   | 0.59 | 0.1  | 0.16  | 45.72                    |
| CAHSF20   | StHSF7    | 0.58 | 0.07 | 0.12  | 44.74                    |
| CAHSF21   | StHSF4    | 0.42 | 0.06 | 0.15  | 32.21                    |
| CAHSF23   | StHSF14   | 0.2  | 0.08 | 0.38  | 15.61                    |
| CAHSF24   | StHSF23   | 0.27 | 0.09 | 0.32  | 20.96                    |
| CAHSF25   | StHSF9    | 0.24 | 0.03 | 0.11  | 18.75                    |
| CAHSF3    | StHSF27   | 1.02 | 0.12 | 0.11  | 78.48                    |
| CAHSF5    | StHSF2    | 0.24 | 0.11 | 0.48  | 18.25                    |
| CAHSF7    | StHSF19   | 0.29 | 0.03 | 0.12  | 22.05                    |
| CAHSF8    | StHSF8    | 0.18 | 0.06 | 0.32  | 13.48                    |
| CAHSF9    | StHSF17   | 0.17 | 0.05 | 0.31  | 13.2                     |
|           | Average   | 0.65 | 0.11 | 0.27  | 49.95                    |

#### References

- 1. Scharf KD *et al.* Biochimica et Biophysica Acta. 2012; 1819(2):104-19.
- 2. Wardlaw IF and Wrigley CW. Australian Journal of Plant Physiology. 1994; 21(6):695–703.
- 3. Skylas DJ *et al.* Journal of Cereal Science. 2002; 35(2):175-88.
- 4. Bar-Tsur A *et al.* Journal of the American Society for Horticultural Sciences. 1985; 110:582–6.
- 5. Li P S et al. BMC Genomics. 2014; 15:1009.
- 6. Nover L et al. Cell Stress Chaperones. 2001; 6:177-189.
- 7. Akerfelt M *et al.* Nature Reviews Molecular Cell Biology. 2010; 11:545-555.
- 8. Hayashida N et al. Transcription. 2011; 2:91-94.
- 9. Czarnecka E *et al.* Plant molecular biology. 2004; 56:57-75.
- 10. Sorger PK Cell. 1991; 65:363-366.
- 11. Baniwal SK *et al.* Journal of Biosciences. 2004; 29:471-487.
- 12. Morimoto RI *et al.* Cold spring harbor monograph archive. 1994; 26:1–30.
- 13. Schöffl F et al. Plant Physiology. 1998; 117:1135-1141.

- 14. Hartl FU et al. Science. 2002; 295:1852-1858.
- 15. Guo J et al. Journal of Genetics & Genomics. 2008; 35:105-118.
- Chauhan H *et al.* Molecular Genetics & Genomics. 2011; 286:171-187.
- 17. Yoshida T *et al.* Molecular Genetics & Genomics. 2011; 286:321–332.
- 18. Hahn A et al. The Plant Cell Online. 2011; 23:741-755
- 19. Mishra S K *et al*. Genes & Development. 2002; 16:1555-1567.
- 20. Rian o-Pacho n D M et al. BMC Bioinformatics. 2007; 8:42.
- 21. Gasteiger, E. *Et al.* Nucleic acids research. 2003; 31(13): 3784-3788.
- 22. Guo AY et al. Yi Chuan. 2007; 29:1023–1026.
- 23. Bailey, T. L *et al.* Nucleic acids research. 2006; 34(2):W369-W373.
- 24. Tamura K *et al.* Molecular Biology & Evolution. 2013; 30:2725-2729.
- 25. Krzywinski et al. Genome research. 2009; 19(9):1639-1645.

- 26. Miller G and Mittler R Annals of Botany. 2006; 98:279–288.
- 27. Lin YX et al. BMC Genomics. 2011; 12:76.
- 28. Wang F et al. Molecular Biology Reports. 2012; 39:1877–1886.
- 29. Kyte J and Doolittle RF Journal of Molecular Biology. 1982; 157:105–132.
- 30. Zhou S et al. Plant Omics. 2013; 6: 449.
- 31. Talley K and Alexov E Proteins 2010; 78:2699–2706
- 32. Rogers HH *et al.* Agriculture Ecosystems & Environment. 1986; 16:113-128.
- 33. Lynch M and Conery JS Science. 2000; 290:1151–1155.
- 34. Zafar SA et al. Plant Omics Journal. 2016; 9:136-141.
- 35. Gaucher EA *et al.* Cold Spring Harbor Perspectives in Biology. 2010; 2(1):a002238.
- 36. Cannon SB et al. BMC Plant Biology. 2004 4:10.
- 37. Yang X et al. Plant Physiology. 2006; 142:820-830.
- 38. Ghiurcuta CG et al. Bioinformatics. 2014; 30:9-18.s