

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2018; 7(4): 2611-2617 Received: 24-05-2018 Accepted: 30-06-2018

Ritika Narayan

Department of Soil Science and Agricultural Chemistry Birsa Agricultural University, Ranchi, Jharkhand, India

Naresh Chandra Gupta

Junior Scientist cum Assistant Professor, Department of Soil Science and Agricultural Chemistry, Birsa Agricultural University, Ranchi, Jharkhand, India

Correspondence Ritika Narayan Department of Soil Science and Agricultural Chemistry Birsa Agricultural University, Ranchi, Jharkhand, India

Isolation, cultural and physiological characterisation of *Azospirillum* from acidic soils of Ranchi

Ritika Narayan and Naresh Chandra Gupta

Abstract

Azospirillum spp. is of worldwide distribution prevalent in tropical, sub-tropical and temperate climatic conditions and has been isolated from the rhizosphere of a variety of tropical and sub-tropical nonleguminous crops. Keeping these points in view a study was conducted during Rabi and Kharif 2016-17 in the Department of Soil Science and Agricultural Chemistry, Birsa Agricultural University, Ranchi, Jharkhand to screen out the presence of Azospirillum in rhizosphere of various non-leguminous crops and to characterize the isolates on the basis of cultural and physiological behaviours. On the basis of pH range (4.0-5.5), 54 soil samples were tentatively selected out of 100 samples for investigation. From the study conducted, presence of Azospirillum in rhizosphere of lower pH was confirmed. 6 colonies out of 54 colonies were translucent while the rest were opaque in terms of degree of opacity. Amount of growth ranged from large to slight. Growth pattern of colonies were found filiform and beaded in 41 and 13 colonies respectively. Physiological investigation revealed that Azospirillum isolates were microaerophilic in relation to free oxygen i.e., developed white pellicles 1-2 mm below the surface of semi-solid Okon's media after 48 hours of incubation at 35°C. All isolates were positive for catalase reaction but responded negative for Indole production and Gelatin liquification test. 15 isolates out of 54 were able to hydrolyse starch. 20 isolates responded positive to nitrate reduction test. 19 isolates out of 54 required biotin for their growth. Pigmentation was reported in 13 isolates after 48 hours of incubation at 35°C on Okon's solid agar media.

Keywords: Azospirillum, rhizosphere, microaerophilic, gelatin, indole

Introduction

The concept of Rhizosphere was first introduced by Hiltner to describe the narrow zone of soil surrounding the roots where microbe populations are stimulated by root activities (Hiltner, 1904)^[8]. Rhizosphere is a potent environment which harbours diverse group of microbial activity and from this zone, some bacteria which are beneficial for plants are termed as 'rhizobacteria'. There are two types of rhizobacteria on the basis of their association with plants, one that can form a symbiotic relationship with the plant, and other that are free-living and interact with the roots in the soil (Glick, 2005)^[7]. Root exudates are the substrate or fuel for the intense microbial (bacteria, fungi, algae, protozoa, nematodes and arthropods) activity within the rhizosphere (Lugtenberg et al. 2002)^[13]. Azospirillum spp. have been identified mainly as rhizosphere bacteria and its colonization of the rhizosphere has been studied extensively in various non-leguminous crops (Steenhoudt and Vanderleyden 2000)^[24]. The soil bacterium Azospirillum was first isolated from the Netherlands and originally named as Spirillum lipoferum by Beijerinck et al. (1925)^[4]. Later Schroder (1932)^[21] isolated from the soils in Germany and Austria. Till now, they have been isolated from the rhizosphere of many grasses and cereals all over the world, in a wide variety of terrestrial and aquatic habitats of tropical as well as in temperate climates (Yooshinan, 2001)^[28]. Its occurrence in the rhizosphere varied from 1 to 10 per cent to the total rhizosphere population (Okon, 1985)^[16]. Occurrence of Azospirillum in soil is strongly pH-dependent with a pH around 7, being optimal. However, sporadic occurrence was observed even in soils with pH 4.8 (Magalhaes et al. 1983)^[14]. Fundamental idea about the physiological and cultural behaviours of PGPRs is pivotal for understanding diverse aspects related to rhizosphere performance and successful interactions with plant roots. This knowledge might give perception about the type of colonization of root surfaces by PGPRs, the way through which these microorganisms benefit plants and might stimulate ideas about how to improve the production and application of PGPR inoculants. Hence the present work was undertaken with a view to screen out the presence of Azospirillum spp. from the rhizosphere of acidic soils of Ranchi (Jharkhand) and characterise them on the basis of their cultural and physiological behaviour.

Materials and Methods Material

Azospirillum species studied in the present investigation were isolated from soil of rhizosphere having pH range of 4.0 to 5.5 of different non-leguminous crops grown in various blocks *viz.*, Kanke, Aangara, Nagri, Bero, Itki of Ranchi district. Details of the location, soil pH and crop grown selected for isolation of *Azospirillum* are mentioned in Table 1.

Collection of rhizosphere soil

Rhizosphere soils were collected from the rhizospheric region

of the plant at the depth of 5-6 cm near the periphery of roots of different crops from different blocks of Ranchi district in plastic bags. The soil samples were preserved in refrigerator.

pH of soil samples

Soil samples were collected from 100 different locations from Ranchi districts for pH analysis. The soil samples were air dried, grinded and sieved for estimation of pH by adopting standard methods. Soil pH was determined in a soil water suspension of 1:2.5 w/v, stirred at regular intervals for 30 minutes using pH meter (Jackson 1973)^[11].

S. No.	Sample. No.	Place of collection	pH of the soil	Crop (previous/ present)
1	AZM5	B.A.U Campus, SSAC, Kanke block	5.4	Maize
2	AZM6	B.A.U Campus, SSAC, Kanke block	5.3	Maize
3	AZM10	B.A.U Campus, SSAC, Kanke block	5.5	Rice
4	AZM15	B.A.U Campus, Tech park, Kanke block	5.1	Rice
5	AZM16	B.A.U Campus, Tech park, Kanke block	5.4	Ragi
6	AZM17	R.A.C Farm, W-section, Kanke block	5.3	Rice
7	AZM18	R.A.C Farm, W-section, Kanke block	5.1	Ragi
8	AZM19	R.A.C Farm, W-section, Kanke block	5.2	Rice
9.	AZM22	R.A.C Farm, W-section, Kanke block	5.5	Wheat
10.	AZM23	R.A.C Farm, W-section, Kanke block	5.4	Wheat
11.	AZM25	Chamghati, Aangara block	5.5	Rice
12.	AZM26	Chamghati, Aangara block	5.3	Rice
13.	AZM27	Chamghati, Aangara block	5.1	Rice
14.	AZM29	Chamghati, Aangara block	5.2	Rice
15.	AZM30	Chamghati, Aangara block	5.4	Rice
16.	AZM32	Chamghati, Aangara block	5.4	Rice
17.	AZM33	Chamghati, Aangara block	5.3	Rice
18.	AZM34	Chamghati, Aangara block	5.2	Rice
19.	AZM35	Chauli patra, Nagri block	4.9	Pea
20.	AZM36	Chauli patra, Nagri block	4.6	Ragi
21.	AZM 39	Itki mor, Itki block	4.7	Potato
22.	AZM 40	Itki mor, Itki block	4.6	Ragi
23.	AZM 42	Itki mor, Itki block	4.7	Mustard + Pea
24.	AZM 45	Garhgao, Itki block	4.6	Pea + Sugarcane
25.	AZM 46	Garhgao, Itki block	5.1	Wheat
26.	AZM 53	Devali, Itki block	5.4	Ragi
27.	AZM 55	Devali, Itki block	4.7	Potato
28.	AZM 56	Devali, Itki block	4.8	Maize
29.	AZM 60	Bhandra, Itki block	4.2	Maize
30.	AZM 61	Bhandra, Itki block	4.7	Onion
31	AZM 62	Karmatoli, Bero block	4.1	Pea + Potato
32.	AZM 63	Karmatoli, Bero block	4.0	Potato
33.	AZM 64	Karmatoli, Bero block	4.0	Potato
34.	AZM 65	Kalanji, Bero block	4.0	Ginger
35.	AZM 66	Didhiya, Bero block	4.1	Mustard + Pea
36.	AZM 70	Tuko, Bero block	5.1	Pea
37.	AZM 71	Tuko, Bero block	4.4	Potato
38.	AZM 75	Parepara, Bero block	4.6	Pea
39.	AZM 76	Parepara, Bero block	4.9	Potato
40.	AZM 70	Parepara, Bero block	4.7	Lentil
41.	AZM 80	Jainathpur, Bero block	4.8	Pea
42.	AZM 81	Jainathpur, Bero block	4.9	Mustard
43.	AZM 83	Bhaishmuro, Bero block	4.4	Ginger
44.	AZM 84	Bhaishmuro, Bero block	4.8	Mustard
45.	AZM 85	Bhaishmuro, Bero block	4.4	Pea
46.	AZM 87	Bhaishmuro, Bero block	4.1	Ragi
47.	AZM 88	Bhaishmuro, Bero block	4.3	Potato
48.	AZM 89	Bhaishmuro, Bero block	4.4	Potato
40. 49.	AZM 89 AZM 90	Bhaishmuro, Bero block	4.4	Potato
49 . 50.	AZM 90 AZM 93	Kundo, Bero block	4.1	Potato
51.	AZM 93 AZM 94	Kundo, Bero block	4.2	Ragi
52.	AZM 94 AZM 95	Kundo, Bero block	4.8	Maize
52. 53.	AZM 93 AZM 99	Bero, Bero block	4.8	Potato
JJ.	ALIVI 99	Dero, Dero Diock	4.3	Ragi

Journal of Pharmacognosy and Phytochemistry

Isolation and purification of Azospirillum spp.

Isolation of Azospirillum species from rhizospheric soils was done following the methods of serial dilution. From the soil samples selected on the basis of pH range (4.0-5.5), 1 g of soil was taken and serially diluted using sterile distilled water upto 10^{-6} dilutions. One ml of diluted sample from 10^{-4} to 10^{-6} dilutions were taken and 1ml of aliquot was inoculated in tubes containing Okon's Nfb (Nitrogen free bromothymol) semi-solid media. All the tubes were incubated at 35°C for 48 h and observed the growth by the formation of pellicles. Pellicles formation is considered as positive for Azospirillum. Pellicles were streaked on petriplates containing Nfb Okon's solid media and incubated at 35°C for 48 hours. Morphologically divergent Azospirillum colonies (white, yellow and pink) were picked from the plates of dilution 10⁻⁵ and streaked on basal minimal salt agar medium and incubated at 35°C for 24 h. After attaining sufficient growth, all the isolates were preserved in a refrigerator for further investigation. The colonies developed on Okon's agar medium (pH adjusted to 6.8) were transferred to slants of same medium and stored at 4°C.

Okon's Media

Malic acid 5.00 g, KOH 4.00 g, K_2 HPO₄ 0.50 g, FeSO₄.7H₂O 0.05 g, MnSO₄.7H₂O 0.01g, MgSO₄.7H₂O 0.10g, NaCl 0.02 g, CaCl₂ 0.01g, Na₂MoO₄ 0.002g, Bromothymol blue (0.5% in 95% methanol) 2.00 ml, Agar 1.8 g (semi-solid)/18 g(solid), NH₄Cl 1 g and Water 1 ltr.

Purification of the culture

Purification of the culture was carried out by frequent transfer of colony of *Azospirillum* developed on Okon's agar media to seal solid nitrogen free malate medium on petriplates (Okon *et al.* 1977)^[17] having the following constituents: K₂HPO₄ 6.0 g, KH₂PO₄ 4.0 g, MgSO₄.7H₂O 0.2 g, NaCl 0.1 g, CaCl₂ 0.2 g, NH₄Cl 0.1 g, NaOH 3.0 g, Yeast extract 0.1 g, FeCl₃ 10.0 mg, Na₂MoO₄ 20.00 mg, MnSO₄ 2.10 mg, H₃BO₃ 2.80 mg, Cu(NO₃)₂ 0.04 mg, Agar 18 g, Water 1 ltr

Cultural characterization

Different isolates of *Azospirillum* species were grown on respective standard media and their characteristic growth patterns were observed. Serially diluted isolates of *Azospirillum* species were grown on Okon's agar medium (Okon *et al.* 1977)^[17] in petriplates and in tubes (for agar strokes) at 35^oC for 72 hours then purification of colonies were done. Observations were made with regard to nature of colonial growth.

Physiological characterization

The following tests were performed to study the physiological behavior of the isolates. In general standard techniques as described in the Manual of Microbiological Methods (1957) and Bergey's manuals of determinative Bacteriology 6th Edition were followed. However in certain test specific method (mentioned against the tests) are also carried out.

Relation to free oxygen

Azospirillum cultures were inoculated in solid malate medium contained in screw capped vials and mixed thoroughly by rotating the tubes and incubated at for a week. Duplicate tubes were put for each isolate aforesaid observations were recorded regarding position of growth, thereby, indicating the oxygen requirement. Following observations were recorded regarding position of growth in the culture tube

Growth on the surface of the medium: Aerobic Growth just below the upper surface of medium: Microaerophilic

Growth deep in the tube: Anaerobic

Catalase reaction

A loopful of 48 hours grown cultures from respective media semi solid malate medium for *Azospirillum* was taken on a glass slide and one ml of 10 percent H_2O_2 was poured over it. Production of gas bubbles from the cultures was taken as positive for catalase (Aneja 1993)^[1].

Production of pigment

In case of *Azospirillum* slants containing Okon's agar medium were inoculated with loopful of 48 hours old cultures and incubated at 35^oC. Pigmentation produced in duplicate tubes were recorded two weeks after incubation.

Gelatin Liquefaction

Plates containing nutrient agar with 0.4 percent gelatin (sterilized at 115 0 C for 20 minutes) were streaked with respective test isolates and incubated for 15 days at their respective temperature optima. Duplicate plates were kept for each isolate. Observation were recorded for the appearance of yellow halo around the growth indicates the utilization of gelatin (Stolpe and Godkeri 1981)^[25] after flooding colonies with mercuric chloride solution (HgCl₂ 15 g, conc. HCl 20ml, distilled water 100 ml).

Hydrolysis of Starch

Plates containing nutrient agar and 1.0 percent soluble starch (Steam sterilized) were streaked with respective isolates in centre and incubated at 35° C (*Azosprillum*) for two weeks. Duplicate plates were kept for each isolate along with inoculated control. Observations for change in colour around streaks after flooding with dilute iodine solution reflected the extent of hydrolysis of starch as against control. A colourless halo around the growth and blue colour in the rest of the plates showed utilization of starch by the microorganisms (Stolpe and Godkeri 1981)^[25].

Production of Indole

Ten milliliter tryptone broth (Tryptone 1%, NaCl 0.15%, pH 7.2) was dispensed in test tubes and steam sterilized at 121° C for 20 minutes. Tubes were inoculated maintained for each isolate alongwith the control and incubated at 35° C for two weeks for *Azospirillum* respectively. Production of indole was treated by adding 0.5ml amyl alcohol, 75ml conc HCL 25ml) to each tube. Formation of deep red colour in alcohol layer are taken as criterion for Indole production (Seeley and Vandemark 1981)^[22].

Nitrate reduction

In case of *Azospirillum* isolates, the method of Neyra *et al.* (1977) ^[15] was adopted with the following composition of semisolid medium as: Malic acid 5.00g, KOH 4.00g, K₂HPO₄ 0.50g, MgSO₄.7H₂O 0.20g, NaCl 0.10g, CaCl₂ 0.02g, FeSO₄.7H₂O 0.50g, MnSO₄, H₂O 0.10g, Na₂MoO₄.2H₂O 0.002g, Bromothymol blue (0.5% in 95% alcohol) 2.0ml, Agar 1.75g, NH₄NO₃ 10.00mM, Distilled water 1 litre. Five milliliter of the above medium was dispensed in tubes and sterilized. Inoculation was done with 0.5 ml of culture suspension. Duplicate tubes for each isolate including control were incubated at 35^{0} C for 7 days.

Reduction of nitrate to nitrite was tested by adding 1 ml each of the reagents ; a) Sulphanilic acid 8 g in 1000ml of 5N acetic acid, b) Naphthylamine 5 g in 1000 ml of 5N acetic acid. Production of pink colour indicated the presence of nitrite (reduction of nitrate). Reduction of nitrate was tested on $7^{\rm th}$ day of incubation.

Biotin requirement of Azospirillum isolates

Medium proposed by Tarrand *et al.* (1978) ^[26] consisting of K₂HPO₄ 0.5g, Succinic acid 5.0g, FeSO₄.7H₂O 0.01g, Na₂MoO₄.2H₂O 0.002g, MgSO₄ 0.2g, NaCl 0.1g, CaCl₂. 2H₂O 0.026g, (NH₄)₂SO₄ 1.0g (pH 7.0 with KOH) with and without (0.0001 g per liter) were prepared. Five milliliter incubated at 37^{0} C for 48 hours after inoculation with different isolates.

Culture grown in Okon's broth were inoculated in 25 ml of nutrient broth and inoculated for 35°C for 48 hours. The cells were harvested by centrifugation and washing twice in 100 ml of sterilized water. Finally, a cell suspension having turbidity of 20 Klett unit (*blue filter*) was prepared and 0.1 ml of this suspension was used to inoculate each culture tube prepared as mentioned above and incubated for 48 hours at 35°C. Visual observation regarding extent of growth of cells in tubes containing biotin was compared with the growth without biotin.

Results and discussions

In the present study, selectivity to grow on specific Nfb (Nitrogen free bromothymol) media and subsequently confirming their morphological, cultural and physiological identity with the type cultures as described in Bergey's Manual (Buchanan and Gibbons, 1974)^[5] and *Aquaspirillum* taxonomy for *Spirillum* (Kreig and Hylemon, 1976)^[12] were taken as reference for investigation and characterization of *Azospirillum* isolates. A total of 54 isolates were studied under various cultural and physiological behaviours which are presented in Table 2.

Cultural Characteristics

Colony morphology

Study revealed that colonies developed on agar slants were smooth, 6 out of 54 colonies were translucent while rest were opaque in terms of degree of opacity. Amount of growth ranged from large to slight. Growth pattern of colonies were filiform and beaded in 41 and 13 colonies respectively. This might be inferred from the investigation that *Azospirillum* displays high degree of pleomorphism with cellular and colony variations among the species as well as within each species depending on the strain, medium composition and culture conditions as reported by Becking, 1985^[3]. The same was investigated by Rasool *et al.* (2015)^[15].

Physiological characteristics Relation to free Oxygen

Oxygen being an ultimate electron acceptor in the electron carrier chain the organism, catabolizing the carbon substrate through aerobic respiratory pathway is required in optimal concentration in the cell. Thus each organism according to their need establishes a physiological relationship with oxygen. Such relationship has been demonstrated in the present study in the case of *Azospirillum* grown in nitrogenfree shake culture.

All 54 isolates of *Azospirillum* grown in nitrogen-free semisolid malate medium exhibited their growth in the form of a pellicle just below the upper surface (1-2 mm below the surface) of the medium indicating thereby the requirement of low partial pressure of Oxygen under dinitrogen fixing condition. Hence they are microaerophilic in relation to free oxygen. This finding is confirmatory with the investigations carried out by Reis *et al.* (2006)^[19].

Catalase reaction

Physiological relationship of bacteria to oxygen is determined by the number and variety of enzymes capable of reacting with oxygen. The oxidation of flavo-proteins by oxygen invariably result in the formation of a toxic compound, Hydrogen peroxide (H₂O₂) and also to a lesser extent even more toxic free radical, Superoxide (O₂⁻). Most of the aerobes and facultative anaerobes have been reported to contain enzymes like superoxide dismutase, catalase and peroxidase while aero tolerant anaerobes contain only superoxide dismutase for their roles in protecting the cell from toxic consequences of oxygen metabolism (Stanier *et al.* 1977) ^[23]. Investigation revealed that all 54 isolates of *Azospirillum* were positive for catalase reaction. It is due to presence of enzyme catalase in all the strains of *Azospirillum*. The findings are in conformity with the works of Ilyas *et al.* (2012)^[10].

Indole production test

All the isolates were negative for Indole production. *Azospirillum* is not capable to synthesize indole from tryptophan. This result was in conformity with the findings of Rosemary *et al.* (2013)^[20].

Starch hydrolysis test

Out of 54 isolates, 15 isolates were able to hydrolyse starch due to presence of enzyme amylase while rest could not hydrolysed starch. This result was in conformity with the findings of Usha and Kanimozhi (2011)^[27] and Hossain *et al.* (2015)^[9].

Nitrate reduction test

Investigation revealed that 20 isolates out of 54 were capable for nitrate reduction in case of shortage of oxygen for their metabolic process. The results were in confirmity with the work of Baliah and Rajalaxmi (2015)^[2].

Production of pigments

By investigation it was obsevered that pigmentation was found in 13 isolates out of 54 while rest isolates did not developed any pigmentation. This was due to presence of carotenoid pigments in that specific isolates. The same was reported by Rasool *et al.* $(2015)^{[18]}$.

Biotin requirement

The *Azospirillum* isolates responded differentially to biotin requirement. 19 isolates out of 54 require biotin for their growth. Rest did not required biotin for their growth. The same was also reported by Baliah and Rajalaxmi (2015)^[2].

Gelatin Liquification

Results revealed that all 54 isolates of *Azospirillum* responded negative to the gelatin liquification test. Gelatin hydrolysis test is used to detect the ability of an organism to produce gelatinase (proteolytic enzyme) that liquefy gelatin. *Azospirillum* strain is not capable to liquify gelatin due to absence of enzyme gelatinase. This result is in conformity with the findings of Hossain *et al.* (2015)^[9].

Conclusion

Free living diazotroph *Azospirillum* are able to survive even at pH 4.0 i.e., under highly acidic conditions and they have wider availability in rhizospheric soils of different blocks of Ranchi district. *Azospirillum* spp. show high degree of polymorphism in respect to their colonial patterns, opacity etc which may be attributed to their isolation from different rhizospheric and soil conditions where they were surviving. Cultural characterization revealed that colonies of *Azospirillum* developed were translucent to opaque in terms of degree of opacity. Growth patterns varied from slight to large. Shape of the colonies was either filliform or beaded. Physiological characterizations revealed that *Azospirillum* isolates grow under Microaerophillic condition i.e., developed

as sub-surface pellicle (1-2 mm below the surface) in Nitrogen free semi solid malate media. All isolates were positive for catalase test but negative for indole production test. *Azospirilla* isolates were unable to liquify gelatin. They grew better at 35°C and the optimum pH for growth was 6.8. Pigmentation were observed in some of the isolates while other isolates did not developed any pigmentation. This is due to the presence of carotenoid pigments. Few isolates were able to hydrolyse starch due to the presence of enzyme amylase for meeting their carbon requirements. Some isolates required Biotin for their growth while rest were able to grow without Biotin. Moreover few isolates were also able to reduce nitrate (NO₃⁻) into nitrite (NO₂⁻).

Table 2: Physiological	and cultural characterization	of new selected Azospirillum isolates

Sl. No.	Isolates	Catalase reaction	Pigment	Starch hydrolysis	Nitrate	Relation to free O2	Indole production	Biotin requirement	Gelatin	Growth	Opacity
1.	AZM 5	Present	-	- -	-	Microaerophillic	-	Not required	-	Large, Filiform	Opaque
2.	AZM 6	Present	-	-	-	Microaerophillic	-	Not required	-	Large, Filiform	Opaque
3.	AZM 10	Present	-	-	-	Microaerophillic	-	Not required	-	Large, Filiform	Translucent
4.	AZM 15	Present	-	-	-	Microaerophillic	-	Not required	-	Large, Filiform	Translucent
5.	AZM 16	Present	-	-	-	Microaerophillic	-	Required	-	Large, Filiform	Translucent
6.	AZM 17	Present	-	-	-	Microaerophillic	-	Not required	-	Large, Filiform	Translucent
7.	AZM 18	Present	-	-	-	Microaerophillic	-	Required	-	Large, Filiform	Opaque
8.	AZM 19	Present	-	-	-	Microaerophillic	-	Required	-	Large, Filiform	Translucent
9.	AZM 22	Present	-	-	+	Microaerophillic	-	Required	-	Large, Beaded	Opaque
10.	AZM 23	Present	-	-	+	Microaerophillic	-	Required	-	Large, Beaded	Opaque
11.	AZM 25	Present	-	-	-	Microaerophillic	-	Required	-	Moderate, Filiform	Translucent
12.	AZM 26	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Beaded	Opaque
13.	AZM 27	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Beaded	Opaque
14.	AZM 29	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Beaded	Opaque
15.	AZM 30	Present	-	-	-	Microaerophillic	-	Required	-	Moderate, Filiform	Opaque
16.	AZM 32	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
17.	AZM 33	Present	-	-	-	Microaerophillic	-	Required	-	Moderate, Filiform	Opaque
18.	AZM 34	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
19.	AZM 35	Present	-	-	+	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
20.	AZM 36	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
21.	AZM 39	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
22.	AZM 40	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
23.	AZM 42	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
24.	AZM 45	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
25.	AZM 46	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
26.	AZM 53	Present	-	-	+	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
27.	AZM 55	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
28.	AZM 56	Present	-	-	-	Microaerophillic	-	Required	-	Moderate, Filiform	Opaque
29.	AZM 60	Present	-	-	-	Microaerophillic	-	Required	-	Moderate, Filiform	Opaque
30.	AZM 61	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
31.	AZM 62	Present	+	+	+	Microaerophillic	-	Required	-	Slight, Beaded	Opaque
32.	AZM 63	Present	+	+	+	Microaerophillic	-	Required	-	Slight, Beaded	Opaque
33.	AZM 64	Present	+	+	+	Microaerophillic	-	Required	-	Slight, Beaded	Opaque
34.	AZM 65	Present	+	+	+	Microaerophillic	-	Required	-	Slight, Beaded	Opaque
35.	AZM 66	Present	+	+	+	Microaerophillic	-	Not required	-	Slight, Filiform	Opaque
36.	AZM 70	Present	+	+	+	Microaerophillic	-	Not required	-	Slight, Filiform	Opaque
37.	AZM 71	Present	+	+	+	Microaerophillic	-	Not required	-	Slight, Filiform	Opaque
38.	AZM 75	Present	-	-	+	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
39.	AZM 76	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
40.	AZM 77	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
41.	AZM 80	Present	+	+	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
42.	AZM 81	Present	+	+	+	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
43.	AZM 83	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
	AZM 84		-	-	+	Microaerophillic	-	Required	-	Moderate, Filiform	Opaque
45.	AZM 85		-	-	+	Microaerophillic	-	Required	-	Moderate, Filiform	Opaque
46.	AZM 87	Present	+	+	+	Microaerophillic	-	Not required	-	Slight, Beaded	Opaque
47.	AZM 88	Present	-	+	+	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
48.	AZM 89	Present	-	+	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
49.	AZM 90	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
50.	AZM 93	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
51.	AZM 94	Present	-	-	-	Microaerophillic	-	Not required	-	Moderate, Filiform	Opaque
52.	AZM 95	Present	+	+	+	Microaerophillic	-	Required	-	Slight, Beaded	Opaque
53.	AZM 99	Present	+	+	+	Microaerophillic	-	Required	-	Slight, Beaded	Opaque
54.	AZM 100	Present	+	+	+	Microaerophillic	-	Required	-	Slight, Beaded	Opaque

Fig 1: White translucent and beaded colonies of Azospirillum

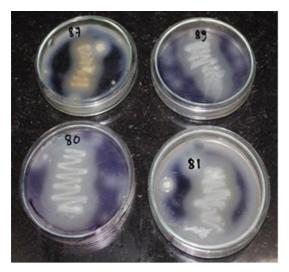


Fig 2: Isolates showing positive response to starch hydrolysis test

Fig 3: Comparison between isolates showing positive and negative response

Fig 4: Response to Indole production test

References

- 1. Aneja KR. Experiments in microbiology and plant pathology, tissue culture and mushroom cultivation. Wishwa Prakashan, New Delhi, 1993, 451.
- 2. Baliah NT, Rajalakshmi V. Isolation and characterization of *Azospirillum* strains isolated from different agroclimatic zones of Virudhunagar district, Tamil Nadu. Indian Journal of Applied Research. 2015; 5:69-74.
- 3. Becking JH. Pleomorphism in *Azospirillum*. In: *Azospirillum III: Genetics, Physiology, Ecology*. Edited by Klingmuller W. Springer, Berlin, 1985, 243-262.
- 4. Beijerinck MW. Uberein *spirillum*, Welches freien stickstoff bidenkann. Central Baktparasit Infect II Abstract Edition, 1925; 63:353-359.
- Buchanan RE, Gibbons NE. Bergey's Manual of Determinative Bacteriology, 8th edition, Williams and Wilkins, Baltimore, 1974, 196.
- 6. Day JM, Dobereiner J. Associative symbiosis in tropical grasses: chracterization of microorganisms and dinitrogen fixing sites In: Proceedings of First International Symposium on N_2 fixation (W.E Newton and C.J. Nyman Eds.), Washington University Press, Pullman W.A, 1976, 518-538.
- 7. Glick BR. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. *FEMS Microbiol. Lett.* 2005; 251:1-7.
- Hiltner L. Uber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderden berucksichtigung und Brache. Arb. Dtsch. Landwirtsch. Gesellschaft. 1904; 98:59-78.
- Hossain M, Jahan I, Akter S, Md. Rahman N, Badier RSM. Isolation and identification of *Azospirillum* isolates from different paddy fields of North Bengal. Indian Journal of Research in Pharmacy and Biotechnology. 2015; 3:74-80.
- 10. Ilyas N, Bano A, Iqbal S, Raja NI. Physiological, biochemical and molecular characterization of *Azospirillum* sp. isolated from maize under water stress. Pakistan Journal of Botany. 2012; 44:71-80.
- 11. Jackson ML. Soil Chemical Analysis. Prentice Hall, New York, 1973, 48-302.
- Kreig NR, Hylemon PB. Taxonomy of the chemoheterotrophic *Spirilla*. Annual Review of Microbiology. 1976; 30:303.
- Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg GV. Microbe-plant interactions: principles and mechanisms. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology. 2002; 81:373-383.
- Magalhaes FMM, Baldani JI, Souto SM, Kuykendall JR, Doberiner J. A new acid tolerant *Azospirillum* species. Annals of Academic Bras Cien. 1983; 55:417-420.
- 15. Neyra CA, Dobereiner J, Lalande R, Knowles R. Denitrification by nitrogen fixing *Spirillum lipoferum*. Canadian Journal of microbiology. 1977; 23:300-305.
- 16. Okon Y. *Azospirillum* as a potential inoculant for agriculture. Trends in Biotechnology. 1985; 3:223-228.
- 17. Okon Y, Albrecht SL, Burris RH. Methods for growing *Spirillum lipoferum* and for counting it in pure culture and in association with plants. Applied and Environmental Microbiology. 1977; 33:85-87.
- 18. Rasool L, Asghar M, Jamil A, Rehman SU. Identification of *Azospirillum* species from Wheat rhizosphere. Journal of Animal and Plant Sciences. 2015; 25:1018-1081.
- 19. Reis FB, Silva MF, Teixeira KRS, Urquiaga S, Reis VM. Identifica de isolados de *Azospirillum amazonense*

associados a Brachiaria spp., em diferentes e pocas e condicoes de cultivoe producao de fitormonio pela bacteria. Rev Bras Cien Solo. 2006; 28:103-113.

- 20. Rosemary OC, OnahGloria T, Igbonekwu CC. Isolation and characterization of nitrogen-fixing bacteria in the soil. International Journal of Life Science and Pharma Research. 2013; 2:2250-3137.
- Schroder M. Die Assimilation des Luftstickstoffs durche Inige Bakterien. Zentbl Bakt. Parasitkde. 1932; 85:177-212.
- 22. Seeley HW, Van Demark PJ. Microbes in Action: A Laboratory Manual of Microbiology. 3rd edition, W.H. Freeman and Company, USA, 1981.
- 23. Stanier RY, Adelberg EA, Ingraham JL. General Microbiology, Pub. Mac Millan press, London, 1977, 309-589.
- 24. Steenhoudt O, Vanderleyden J. *Azospirillum*, a free living nitrogen-fixing bacteria closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Review. 2000; 24:487-506.
- 25. Stolpe, Godkeri. Non-pathogenic members of genus *Pseudomonas* in the prokaryotes. Marthiner *et al.* (eds). Springer Verlag, New York, 1981, 719-741.
- 26. Tarrand JJ, Kreig NR, Dobereiner J. A taxonomic study of the Spirillum lipoferum group, with a descriptions of a new genus, Azospirillum gen. nov., and two species, Azospirillum lipoferum (Beijerink) comb. nov. and Azospirillum brasilense sp. nov. Canadian Journal of Microbiology. 1978; 24:967-980.
- 27. Usha DK, Kanimozhi K. Isolation and characterization of saline tolerant *Azospirillum* strains from paddy field of Thanjavur district. Advances in Applied Science Research. 2011; 2:239-245.
- 28. Yooshinan SU. Biological Nitrogen Fixation. Journal of Biological Association. 2001; 8:50-55.