E-ISSN: 2278-4136
P-ISSN: 2349-8234
JPP 2018; 7(3): 1119-1123
Received: 04-03-2018
Accepted: 08-04-2018

Namrata Kashyap

Department of Soil Science, Assam Agricultural, University, Jorhat, Assam, India

KN Das

Department of Soil Science, Assam Agricultural, University, Jorhat, Assam, India

Bipul Deka
Department of Soil Science, Assam Agricultural, University, Jorhat, Assam, India

Marami Dutta

Department of Soil Science, Assam Agricultural, University, Jorhat, Assam, India

Anjali Basumatary
Department of Soil Science, Assam Agricultural, University, Jorhat, Assam, India

Correspondence

Namrata Kashyap Department of Soil Science, Assam Agricultural, University, Jorhat, Assam, India

Individual and combined effect of p and k on yield and nutrient uptake of hybrid rice under IPNS in an alluvial soils of Assam

Namrata Kashyap, KN Das, Bipul Deka, Marami Dutta and Anjali Basumatary

Abstract

A field experiment was conducted based on soil test crop response correlation in an Alluvial soils of Assam during Kharif season of 2016-17 following Ramamoorthy's Inductive-cum-targeted yield model to elucidate the relationship between soil tests and response of hybrid rice (cv US -382) to applied fertilizers under integrated plant nutrition system (IPNS). For producing one quintal of rice grain, hybrid rice required on an average $2.00,0.31$ and $2.35 \mathrm{~kg} \mathrm{~N}, \mathrm{P}$ and K , respectively. The results also indicated that integrated application of chemical fertilizers and vermicompost increased the grain and straw yield, and NPK uptake in rice as well as enhanced organic-C and available N, P and K in soil. Omission of nutrients caused yield loss between $8.3 \%(-\mathrm{P})$ and $9.7 \%(-\mathrm{K})$ and it has also decreased their uptake. Conversely, plots receiving P and K fertilizers alone could significantly increase grain yield by 9.3% and 5.2%, respectively over control. The P and K uptake were increased by 35.8% and 30.3% respectively, over control due to individual addition of P and K with respective apparent recovery of 7.3% and -21%. Uptake of all the nutrients was significantly correlated with yield ($\mathrm{r}=0.840^{* *}, 0.373^{* *}$ and $0.284^{* *}$ for N, P and K, respectively), suggesting interdependence of nutrient uptake that influenced yield. Buildup of organic-C and available NPK was more pronounced in chemical fertilizer treated plots.

Keywords: phosphorus, potassium, hybrid rice, soil test crop response, IPNS, nutrient uptake

Introduction

In India, rice (Oryza sativa L.) is the most important food grain crop contributing about 41.5% to the total food grain production of the country. Rice is the most important and staple food crop for more than two thirds of the population in Assam. The gross and net cropped area for rice in Assam is 3.84 and 2.75 million hectare (Mha), respectively. Winter (Sali) rice is the most important variety with productivity of $2.02 \mathrm{t} \mathrm{ha}^{-1}$ followed by autumn (Ahu) rice with a productivity of $1.36 \mathrm{t} \mathrm{ha}^{-1}$ in Assam. The total rice productivity in Assam is $2.11 \mathrm{t} \mathrm{ha}{ }^{-1}$. Rice fulfills 43 per cent of calories requirement of more than 70 per cent of the Indian population. Indeterminate and imbalanced use of high analysis fertilizers resulted in multiple nutrient deficiencies (Das et al. 2015, Singh et al. 2014) ${ }^{[3,18]}$ particularly in the rice growing areas. Phosphorus and potassium along with Nitrogen are essential macronutrients that must be applied to maintain the productivity and to prevent deficiencies of these nutrients from limiting crop yields. Deficiencies of P and K are most frequently observed in rice fields of Assam. Generally, rice is susceptible to P-deficiency and its symptoms are shown during the seedling to maximum tillering stages in acid soils of the state. In contrast, K-deficiency symptoms are seen during the seedling and boot stage. Soils with $\mathrm{pH}<5.0$ that have low soil K concentrations show potassium deficiencies in rice. Although P and K deficiencies of rice are observed every year, research studies have occasionally shown significant rice yield increase from P and K fertilization. Alluvial soils are distributed in the Indo - Gangetic Plains and Brahmaputra Valley, and cover an estimated area of 75 mha . They are variable in physicochemical properties. Depending on the source of parent material and climate, they are either alkaline or acidic in soil reaction. They are inherently rich in plant nutrients but extreme acidity or alkalinity together with resultant soil characteristics affects their availabilities. In general, they are fairly sufficient in phosphorus and potassium, but are deficient in nitrogen and organic matter contents. One of the reasons for lower productivity is imbalanced fertilization of N, P and K nutrients. Replacement of inbred varieties of rice by hybrids could help in improving the productivity of rice in India. Rice hybrids can yield $10-44 \%$ higher grain than popular high yielding varieties and expect to have higher nutrient requirement as compared to traditional cultivars (Gupta et al. 2011) ${ }^{[5]}$. The productivity of hybrid rice in

Assam is 65 to $100 \mathrm{q} \mathrm{ha}^{-1}$. The hybrids developed by the Hybrid Rice Research Network and some others developed by IRRI and private sectors are categorized into three maturity groups i.e. early (< 120 days), mid - early (121 to 130 days) and medium ($131-140$ days). The hybrids of these three maturity groups are then evaluated in Initial Hybrid Rice Trail (IHRT) at 25-30 locations across the country and observed high requirement of balanced nutrition. Therefore, to sustain long term productivity balanced nutrition to crops is the key factor. If fertilizers are applied under integrated plant nutrition system (IPNS) on the basis of soil test then greater economy in fertilizer use can be made. Soil test based fertilizer recommendations result in efficient fertilizer use and maintenance of soil fertility. Among these, the targeted yield approach (Ramamoorthy et al. 1967) gained status and impetus in India. Targeted yield concept is based on quantitative idea of the fertilizer needs based on yield and nutrient requirements of the crop, per cent contribution of the soil available nutrients and that of the applied fertilizers. This method not only estimates soil test based fertilizer dose but also the level of yield the farmer can achieve with that particular dose. Targeted yield approach also provides scientific basis for balanced fertilization of crop by creating the balance among the nutrients from the external sources and that from the soil. This practice ensures balanced fertilization, higher yield and more profitability. Soil test based application of plant nutrient helps to realize higher response ratio and benefit: cost ratio as the nutrients are applied in proportion to the magnitude of the deficiency of a particular nutrient and the correction of the nutrients imbalance in soil helps to harness the synergistic effects of balanced fertilization (Rao and Srivastava, 2000) ${ }^{[12]}$. In Assam, works on soil test crop response correlation under integrated plant nutrition system (STCR-IPNS) on hybrid rice has not yet been initiated. In the present investigation, hence an effort was made to study the influence of integrated nutrient management on rice yield and tissue concentration of P and K in response to fertilizers application under IPNS in STCR experiment on acidic alluvial soils of Assam.

Materials and Methods

A field experiment was conducted based on STCR approach with hybrid rice variety (US - 382) in Assam Agricultural University Experimental Farm, Jorhat located at a latitude of $26^{\circ} 48^{\prime} \mathrm{N}$ and longitude of $95^{\circ} 50^{\prime} \mathrm{E}$ during Kharif season of 2016-17 in an acidic Alluvial soils. The soils of experimental site was sandy clay loam in texture and acidic in reaction having pH value of 5.10 and organic carbon of 0.60 per cent. The amount of available $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ were 212.66, 32.95 and $118.47 \mathrm{~kg} \mathrm{ha}{ }^{-1}$, respectively. A STCR-test crop experiment (Ramamoorthy et al. 1967) composed of three gradient strips and four blocks which were fertilized with $\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{0}, \mathrm{~N}_{1} \mathrm{P}_{1} \mathrm{~K}_{1}$ and $\mathrm{N}_{2} \mathrm{P}_{2} \mathrm{~K}_{2}$ levels. The recommended fertilizers $\left(\mathrm{N}_{1} \mathrm{P}_{1} \mathrm{~K}_{1}\right)$ were 60,20 and $40 \mathrm{~kg} \mathrm{ha}{ }^{-1}$ of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$, respectively. Altogether 24 treatments involving various selected combination levels of nitrogen ($0,30,60,90$ and 120 $\mathrm{N} \mathrm{kg} \mathrm{ha}{ }^{-1}$), phosphorus ($0,20,40,80 \mathrm{~kg}_{2} \mathrm{O}_{5} \mathrm{ha}^{-1}$), potassium (0,40 and $80 \mathrm{~kg} \mathrm{~K}_{2} \mathrm{O} \mathrm{ha}^{-1}$) and vermicompost (0,2 and $3 \mathrm{t} \mathrm{ha}^{-}$ ${ }^{1}$) were made. Three strips were superimposed to different plots in each strip in a fractional factorial design (Table 1). Hybrid rice variety (US-382) was grown as a test crop as per the recommended cultural practices. Pre-sowing and post harvest soil samples were collected from each plot and were analysed for organic carbon available N, P and K following standard methods (Jackson, 1973) ${ }^{[6]}$. The plant samples which
were collected at harvest were analysed for NPK contents and their respective uptake of nutrients in rice were also figured out. Grain yield from different treatments, from each strip and from each block was also recorded. The whole plant sample with roots were collected and used for analysis of numerous parameters at maximum tillering stage. The effects P and K on crop yield, nutrient uptake, soil organic carbon and available nutrients were also estimated. Apparent recovery also known as fertilizer use efficiency was calculated by using the formula (Pillai and Varmadevan 1978, Das et al. 2015) ${ }^{[11,}$ ${ }^{3]}$.

Table 1: Treatment details for test crop experiment

Strip I	Strip II	Strip III
$\mathrm{N}_{4} \mathrm{P}_{0} \mathrm{~K}_{0} \mathrm{OM}_{3}$	$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{2} \mathrm{OM}_{3}$	$\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{~K}_{2} \mathrm{OM}_{3}$
$\mathrm{N}_{1} \mathrm{P}_{1} \mathrm{~K}_{0} \mathrm{OM}_{3}$	$\mathrm{N}_{3} \mathrm{P}_{1} \mathrm{~K}_{1} \mathrm{OM}_{3}$	$\mathrm{N}_{4} \mathrm{P}_{2} \mathrm{~K}_{1} \mathrm{OM}_{3}$
$\mathrm{N}_{1} \mathrm{P}_{1} \mathrm{~K}_{1} \mathrm{OM}_{3}$	$\mathrm{N}_{3} \mathrm{P}_{1} \mathrm{~K}_{2} \mathrm{OM}_{3}$	$\mathrm{N}_{4} \mathrm{P}_{2} \mathrm{~K}_{2} \mathrm{OM}_{3}$
$\mathrm{N}_{0} \mathrm{P}_{3} \mathrm{~K}_{0} \mathrm{OM}_{3}$	$\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{~K}_{0} \mathrm{OM}_{3}$	$\mathrm{N}_{4} \mathrm{P}_{3} \mathrm{~K}_{1} \mathrm{OM}_{3}$
$\mathrm{N}_{2} \mathrm{P}_{0} \mathrm{~K}_{2} \mathrm{OM}_{3}$	$\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{~K}_{1} \mathrm{OM}_{3}$	$\mathrm{N}_{4} \mathrm{P}_{3} \mathrm{~K}_{2} \mathrm{OM}_{3}$
$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{0} \mathrm{OM}_{3}$	$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{0} \mathrm{OM}_{3}$	$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{0} \mathrm{OM}_{3}$
$\mathrm{N}_{2} \mathrm{P}_{1} \mathrm{~K}_{0} \mathrm{OM}_{3}$	$\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{~K}_{2} \mathrm{OM}_{3}$	$\mathrm{N}_{4} \mathrm{P}_{0} \mathrm{~K}_{0} \mathrm{OM}_{3}$
$\mathrm{N}_{2} \mathrm{P}_{1} \mathrm{~K}_{1} \mathrm{OM}_{3}$	$\mathrm{N}_{4} \mathrm{P}_{2} \mathrm{~K}_{1} \mathrm{OM}_{3}$	$\mathrm{N}_{1} \mathrm{P}_{1} \mathrm{~K}_{0} \mathrm{OM}_{3}$
$\mathrm{N}_{2} \mathrm{P}_{2} \mathrm{~K}_{0} \mathrm{OM}_{2}$	$\mathrm{N}_{4} \mathrm{P}_{2} \mathrm{~K}_{2} \mathrm{OM}_{2}$	$\mathrm{N}_{1} \mathrm{P}_{1} \mathrm{~K}_{1} \mathrm{OM}_{2}$
$\mathrm{N}_{2} \mathrm{P}_{2} \mathrm{~K}_{1} \mathrm{OM}_{2}$	$\mathrm{N}_{4} \mathrm{P}_{3} \mathrm{~K}_{1} \mathrm{OM}_{2}$	$\mathrm{N}_{0} \mathrm{P}_{3} \mathrm{~K}_{0} \mathrm{OM}_{2}$
$\mathrm{N}_{2} \mathrm{P}_{2} \mathrm{~K}_{2} \mathrm{OM}_{2}$	$\mathrm{N}_{4} \mathrm{P}_{3} \mathrm{~K}_{2} \mathrm{OM}_{2}$	$\mathrm{N}_{2} \mathrm{P}_{0} \mathrm{~K}_{1} \mathrm{OM}_{2}$
$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{0} \mathrm{OM}_{2}$	$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{0} \mathrm{OM}_{2}$	$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{0} \mathrm{OM}_{2}$
$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{2} \mathrm{OM}_{2}$	$\mathrm{N}_{4} \mathrm{P}_{0} \mathrm{~K}_{0} \mathrm{OM}_{2}$	$\mathrm{N}_{2} \mathrm{P}_{1} \mathrm{~K}_{0} \mathrm{OM}_{2}$
$\mathrm{N}_{3} \mathrm{P}_{1} \mathrm{~K}_{1} \mathrm{OM}_{2}$	$\mathrm{N}_{1} \mathrm{P}_{1} \mathrm{~K}_{0} \mathrm{OM}_{2}$	$\mathrm{N}_{2} \mathrm{P}_{1} \mathrm{~K}_{1} \mathrm{OM}_{2}$
$\mathrm{N}_{3} \mathrm{P}_{2} \mathrm{~K}_{2} \mathrm{OM}_{2}$	$\mathrm{N}_{1} \mathrm{P}_{1} \mathrm{~K}_{1} \mathrm{OM}_{2}$	$\mathrm{N}_{2} \mathrm{P}_{2} \mathrm{~K}_{0} \mathrm{OM}_{2}$
$\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{~K}_{0} \mathrm{OM}_{2}$	$\mathrm{N}_{0} \mathrm{P}_{3} \mathrm{~K}_{0} \mathrm{OM}_{2}$	$\mathrm{N}_{2} \mathrm{P}_{2} \mathrm{~K}_{1} \mathrm{OM}_{2}$
$\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{~K}_{1} \mathrm{OM}_{1}$	$\mathrm{N}_{2} \mathrm{P}_{0} \mathrm{~K}_{1} \mathrm{OM}_{1}$	$\mathrm{N}_{2} \mathrm{P}_{2} \mathrm{~K}_{2} \mathrm{OM}_{1}$
$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{0} \mathrm{OM}_{1}$	$\mathrm{N}_{2} \mathrm{P}_{1} \mathrm{~K}_{0} \mathrm{OM}_{1}$	$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{0} \mathrm{OM}_{1}$
$\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{~K}_{2} \mathrm{OM}_{1}$	$\mathrm{N}_{2} \mathrm{P}_{1} \mathrm{~K}_{1} \mathrm{OM}_{1}$	$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{2} \mathrm{OM}_{1}$
$\mathrm{N}_{4} \mathrm{P}_{2} \mathrm{~K}_{2} \mathrm{OM}_{1}$	$\mathrm{N}_{2} \mathrm{P}_{2} \mathrm{~K}_{0} \mathrm{OM}_{1}$	$\mathrm{N}_{3} \mathrm{P}_{1} \mathrm{~K}_{1} \mathrm{OM}_{1}$
$\mathrm{N}_{4} \mathrm{P}_{3} \mathrm{~K}_{1} \mathrm{OM}_{1}$	$\mathrm{N}_{2} \mathrm{P}_{2} \mathrm{~K}_{1} \mathrm{OM}_{1}$	$\mathrm{N}_{3} \mathrm{P}_{2} \mathrm{~K}_{2} \mathrm{OM}_{1}$
$\mathrm{N}_{4} \mathrm{P}_{3} \mathrm{~K}_{2} \mathrm{OM}_{1}$	$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{0} \mathrm{OM}_{1}$	$\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{~K}_{0} \mathrm{OM}_{1}$
$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{0} \mathrm{OM}_{1}$	$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{2} \mathrm{OM}_{3}$	$\mathrm{N}_{3} \mathrm{P}_{3} \mathrm{~K}_{1} \mathrm{OM}_{1}$
$\mathrm{N}_{4} \mathrm{P}_{0} \mathrm{~K}_{0} \mathrm{OM}_{3}$	$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{2} \mathrm{OM}_{3}$	$\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{0} \mathrm{OM}_{1}$

Where,
Nitrogen
$\mathrm{N}_{0}=0 \mathrm{~kg} \mathrm{ha}^{-1}, \mathrm{~N}_{1}=30 \mathrm{~kg} \mathrm{ha}^{-1}, \mathrm{~N}_{2}=60 \mathrm{~kg} \mathrm{ha}^{-1}$ and $\mathrm{N}_{3}=90 \mathrm{~kg}$ ha^{-1}

Phosphorus

$P_{0}=0 \mathrm{~kg} \mathrm{ha}^{-1}, \mathrm{P}_{1}=20 \mathrm{~kg} \mathrm{ha}^{-1}, \mathrm{P}_{2}=40 \mathrm{~kg} \mathrm{ha}^{-1}$ and $\mathrm{P}_{3}=80 \mathrm{~kg}$ h^{-1}

Potassium

$\mathrm{K}_{0}=0 \mathrm{~kg} \mathrm{ha}^{-1}, \mathrm{~K}_{1}=40 \mathrm{~kg} \mathrm{ha}^{-1}$ and $\mathrm{K}_{2}=80 \mathrm{~kg} \mathrm{ha}^{-1}$

Vermicompost

$\left(\mathrm{OM}_{0}\right)=0.0 \mathrm{ha}^{-1},\left(\mathrm{OM}_{1}\right)=2 \mathrm{tha}{ }^{-1},\left(\mathrm{OM}_{2}\right)=3 \mathrm{tha}{ }^{-1}$ and $\mathrm{N}_{4}=$ $120 \mathrm{~kg} \mathrm{ha}^{-1}$

Results and Discussion

Crop trials were conducted with the assumption that recommendations of fertilizers depend on crop response experiments in which spatial variability has been minimized for every independent variable affecting crop yield except for the nutrient in question, although many non-fertility variables viz. WHC, bulk density, soil erosion and other fertility variables significantly impact crop yield (Kastens et al. 2003) [7].

Soil characteristics

The soils of the experimental field was sandy clay loam in texture with pH 5.13 , organic carbon 0.60%, CEC 7.22 cmol $(\mathrm{p}+) \mathrm{kg}^{-1}$, available $\mathrm{N} 212.66 \mathrm{~kg} \mathrm{ha}^{-1}$, available $\mathrm{P}_{2} \mathrm{O}_{5} 32.95 \mathrm{~kg}$
ha^{-1} and available $\mathrm{K}_{2} \mathrm{O} 112.95 \mathrm{~kg} \mathrm{ha}^{-1}$. Strip wise range and mean values of soil organic carbon, available nutrients and grain yield are furnished in Table 3. The organic-C in treated plots, ranged from 3.40 to 13.70 and 4.00 to $14.90 \mathrm{~g} \mathrm{~kg}^{-1}$ with mean values of 8.60 and $9.00 \mathrm{~kg}^{-1}$ in strips L_{1} and L_{2}, respectively. In control plots, it ranged from 3.10 to 11.20 with a mean of $7.70 \mathrm{~g} \mathrm{~kg}^{-1}$. A perusal of the data (Table 2) indicates that the available $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ varied from 115.08 to $312.74 \mathrm{~kg} \mathrm{ha}^{-1}, 8.26$ to 24.11 and 111.20 to 234.60 kg ha ${ }^{1}$, respectively in strip $L_{0}, 140.31$ to $362.91,14.40$ to 32.37 and 142.22 to $269.40 \mathrm{~kg} \mathrm{ha}^{-1}$ in strip $\mathrm{L}_{1}, 243.35$ to 477.46, 20.99 to 41.81 and 158.45 to $301.42 \mathrm{~kg} \mathrm{ha}^{-1}$ in strip L_{2} with a mean of $183.13,14.73$ and $172.14 \mathrm{~kg} \mathrm{ha}^{-1}, 271.00$, 25.32 and 219.97, 356.62, 29.97 and 237.58 available NPK, respectively in their respective strips.

Table 2: Range and mean values of soil parameters under different strips

Particulars	Strip L_{0}	Strip L1	Strip L2
Organic carbon ($\mathrm{g} \mathrm{kg}^{-1}$)	$\begin{gathered} 3.10-11.20 \\ (7.70) \\ \hline \end{gathered}$	$\begin{gathered} 3.40-13.70 \\ (8.60) \end{gathered}$	$\begin{gathered} 4.00-14.9 \\ (9.00) \end{gathered}$
Available N ($\mathrm{kg} \mathrm{ha}^{-1}$)	$\begin{gathered} 115.08-312.74 \\ (183.13) \end{gathered}$	$\begin{gathered} 140.31-362.91 \\ (271.00) \end{gathered}$	$\begin{gathered} 243.35-477.46 \\ (356.62) \end{gathered}$
$\begin{gathered} \text { Available } \mathrm{P}_{2} \mathrm{O}_{5} \\ \left(\mathrm{~kg} \mathrm{ha}^{-1}\right) \end{gathered}$	$\begin{gathered} 8.26-24.11 \\ (14.73) \\ \hline \end{gathered}$	$\begin{gathered} 14.40-32.3 \\ (25.32) \end{gathered}$	$\begin{gathered} 20.99-41.8 \\ (29.77) \end{gathered}$
$\begin{gathered} \text { Available } \mathrm{K}_{2} \mathrm{O} \\ \left(\mathrm{~kg} \mathrm{ha}^{-1}\right) \end{gathered}$	$\begin{gathered} 111.20-234.60 \\ (172.14) \\ \hline \end{gathered}$	$\begin{gathered} 142.22-269.40 \\ (219.97) \\ \hline \end{gathered}$	$\begin{gathered} 158.45-301.42 \\ (237.58) \\ \hline \end{gathered}$
Grain yield ($\mathrm{q} \mathrm{ha}^{-1}$)	$\begin{gathered} 35.30-67.90 \\ (50.92) \end{gathered}$	$\begin{gathered} 34.92-74.05 \\ (53.77) \end{gathered}$	$\begin{gathered} 37.90-74.70 \\ (57.31) \\ \hline \end{gathered}$

Figures in parentheses indicate mean values
It was observed that with increasing fertility in the strips, all the soil parameters as well as grain yield increased and the highest content was exhibited in strip L_{2}. This might be due to better nutrient uptake by the crop which favourably influenced the growth and yield of rice as reported by (Santhi and Selvakumari 1999, Das et al. 2015) ${ }^{[15,3]}$. Moreover, the results point out that a considerable variability existed in the soil test values and grain yield, which is a pre-requisite for calculating the basic parameters and fertilizer prescription equations for calibrating the fertilizer doses for specific yield targets (Santhi et al. 2002 and Chatterjee et al. 2010) ${ }^{[14,2]}$.

Yield

A perusal of the data (Table 2) exhibited that grain yield of rice ranged from 35.30 to $67.90,34.92$ to 74.05 and 37.90 to 74.70 with mean values of 50.92 , 53.77 and $57.31 \mathrm{~kg} \mathrm{ha}^{-1}$ in strips L_{0}, L_{1} and L_{2} respectively. Highest grain and straw yield of 58.30 and $68.50 \mathrm{q} \mathrm{ha}^{-1}$ was recorded with application of vermicompost @ $3 \mathrm{t} \mathrm{ha}{ }^{-1}$, respectively (Table 3). However, it was comparable with the yield obtained with application of vermicompost @ 0 and $2 \mathrm{t} \mathrm{ha}{ }^{-1}$. Both the grain and straw yields obtained with vermicompost levels were significantly higher over the control. Specifically the higher organic matter and available N, P and K (Table 3) provided an improved soil quality leading to improved crop productivity. The crop could also have benefited from the changes in soil physical properties as a result of vermicompost addition, (Ogbodo 2011) ${ }^{[10]}$. Application of 3 t vermicompost ha^{-1} improved available N, P, and K status over other treatments and the benefits of this was reflected in yield of rice. Soil productivity is closely linked with soil organic matter statushelps in the improvement of soil structure and organic matter status. Among the NPK fertilizer treated soils (Table 3), the grain and straw yields of hybrid rice cv. (US - 382) were significantly higher in plots where fertilizers were applied either alone or in combination with each other than that where NPK were omitted (control). The highest yield of grain (61.60 $\mathrm{q} \mathrm{ha}{ }^{-1}$) and straw ($70.60 \mathrm{q} \mathrm{ha}^{-1}$) were recorded in plots receiving all NPK fertilizers. Plots receiving P and K fertilizers alone showed significant increase in yield over control and the magnitudes of increase were 22.20 and 11.07 $\%$, respectively. Conversely, omission of nutrients caused yield loss between $8.3 \%(-\mathrm{P})$ and 9.7 \% (- K). These results were supported by the findings of Channabasavanna and Biradar (2001) ${ }^{[1]}$, Ebaid et al. (2007) ${ }^{[4]}$, Mukhopadhyay et al. (2008) ${ }^{[9]}$, Siavoshi et al. (2011) ${ }^{[17]}$ and Das et al. (2015) ${ }^{[3]}$ for high yielding rice. The increase in grain and straw yield in NPK fertilized plots could be due to enhanced nutrient availability which improved nitrogen and other macro- and micro-elements absorption as well as enhancing the production and translocation of the dry matter content from source to sink. Based on the experimental data, the nutrient requirement (NR) for producing one quintal of rice grain on an average was calculated to be $2.00,0.31$ and $2.35 \mathrm{~kg} \mathrm{~N}, \mathrm{P}$ and K respectively.

Table 3: Effect on P and K on grain and straw yield of hybrid rice (cv. US-382), nutrient uptake, organic-C and available nutrient in soil under different treatments

Treatments	Yield ($\mathrm{q} \mathrm{ha}^{-1}$)			Nutrient uptake (kg ha ${ }^{-1}$)			Apparent Recovery (\%)		OC ($\mathrm{g} \mathrm{kg}^{-1}$)	Available nutrient in soil ($\mathrm{kg} \mathrm{ha}^{-1}$)		
	Grain	Straw	Δ Yield	N	P	K	P	K		N	$\mathrm{P}_{2} \mathrm{O}_{5}$	$\mathrm{K}_{2} \mathrm{O}$
Vermicompost (t ha ${ }^{-1}$)												
0	53.2	57.2	5.1 (8.7)	103.2	15.4	125.1	23.5	30.3	6.8	272.4	21.5	178.3
2	54.7	64.6	3.6 (6.2)	108.7	15.6	96.8	25.4	-35.3	8.3	273.3	24.0	213.5
3	58.3	68.5	-	110.2	16.5	102.1	30.8	-20.1	10.0	273.4	23.7	216.2
SEM \pm	3.6	4.0	-	7.9	1.5	8.3	-	-	0.7	32.5	2.6	14.1
LSD5\%	NS	6.9	-	NS	NS	14.4	-	-	1.3	NS	NS	24.3
NPK Fertilizers												
(-) NPK	40.6	48.0	21.0 (34.1)	81.3	13.1	135.8	-	-	5.3	252.3	23.6	222.8
$(-)$ NK	44.4	52.6	17.2 (27.9)	98.6	17.8	96.5	7.3	-	5.8	354.3	33.6	209.0
(-) NP	42.7	50.5	18.9 (30.7)	85.1	18.2	104.2	-	-21	6.8	255.9	17.2	181.8
$(-) \mathrm{N}$	43.4	51.6	18.2 (29.5)	91.6	18.0	92.7	43.0	-67.8	6.8	255.4	20.4	181.9
(-) P	56.5	68.5	5.1 (8.3)	104.8	16.5	142.4	-	63.9	8.4	227.4	21.4	209.0
(-) K	55.6	68.9	6 (9.7)	107.9	17.8	144.7	33.3	-	8.6	137.5	22.9	212.6
(+) NPK	61.6	70.6	-	118.7	16.6	128.5	22.4	24.6	9.5	274.6	24.4	219.2
SEM \pm	2.8	2.8	-	7.4	1.3	8.5	-	-	0.7	31.8	42.2	12.9
$\mathrm{LSD}_{5 \%}$	7.2	7.5	-	19.2	3.4	NS	-		1.7	NS	5.7	33.5

Δ Yield $=$ Yield of vermicompost 3 - yield of respective treatments for levels of vermicompost and Yield of NPK - yield of omitted nutrient treatment for NPK fertilizers; Data in parentheses are percent yield loss

Nutrient uptake

Uptake of N by rice ranged from $103.20 \mathrm{~kg} \mathrm{ha}^{-1}$ in control to $110.20 \mathrm{~kg} \mathrm{ha}^{-1}$ in plots receiving 3 t vermicompost ha ${ }^{-1}$ and the uptake was superior at 5% level of significance. Nitrogen uptake was decreased by 16.93 and 28.30% with single application of P and K , respectively over combined application of N, P and K . Uptake of P and K ranged from 15.40 to $16.50 \mathrm{~kg} \mathrm{ha}^{-1}$ and 96.80 to $102.10 \mathrm{~kg} \mathrm{ha}^{-1}$, respectively and were not significantly affected by vermicompost. On the other hand, uptake of all the major nutrients was significantly affected by NPK fertilizers alone or in combination with each other over control (Table 3). In all the cases, the highest amount of nutrients was removed by rice treated with all the NPK fertilizers. The relative absorption of P was found to be significant in plots where only P was applied over that of no NPK (control). The P uptake in this plot was increased by 35.80 per cent more over control with an apparent recovery of 7.30 per cent (Table 3) and it rose to 85.10% in plots receiving N and P together so did the apparent recovery percentage to 33.30.The relative use efficiency of P enhanced to 22.40 per cent by combined application of NPK fertilizers and remaining 77.60 per cent of applied P was left in the soil which was either fixed or available as residual P to the follow up crop. The absorption of applied K was the highest with application of NPK fertilizers together ($24.60 \mathrm{~kg} \mathrm{ha}^{-1}$) and the effect of different combination of N, P and K was statistically significant over control (Table 3). The efficiency of K absorption evaluated as apparent recovery was -21.00 and 63.90 per cent, respectively with application of K alone and N and P together. Apparent recovery was improved to 24.60 per cent by combined application of NPK fertilizers. The K uptake was considerably higher in most of the treatments receiving K fertilizer compared to N and P (Table 3). The yields have markedly increased with improved crop management practices such as use of N and P fertilizers, resulting in higher K removal owing to higher biomass production (Sheeba and Chellamuthu 1999) ${ }^{[16]}$. Uptake of all the nutrients significantly correlated with yield ($\mathrm{r}=0.840^{* *}, 0.373^{* *}$ and $0.284^{* *}$ for N, P and K , respectively), suggesting interdependence of nutrient uptake that influenced yield.

Organic-C and available nutrients -

The organic-C content in post-harvest soil increased significantly due to application of vermicompost @ 2 and 3 t ha ${ }^{-1}$ over control. It was observed that organic carbon content was higher in the treatments where chemical fertilizers were integrated with vermicompost (interaction effect not given here). There was 24.62% increase of organic carbon content in plot receiving NPK fertilizer together over that of the control plot. In contrary, omission of P and K tended to decrease organic carbon over control (no NPK) while other treatments significantly increased soil organic-C in postharvest soil (Table 3). The effect of vermicompost application in STCR experiment was found to increase significantly only in available N in soil vis-a-vis $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ (Table 3). This might be due to presence of very negligible amount of P and K in vermicompost and in highly complexed organic form. This confronts the findings of Singh et al. (2001) ${ }^{[19]}$ and Kaur and Benipal (2006) ${ }^{[8]}$ who reported that use of vermicompost alone or with fertilizer N increased the available K status of the soil. The effect of various combination of N, P and K fertilizers on their available contents in soil was highly significant $(\mathrm{p}<0.01)$. Plots receiving P and K alone showed marked reduction in available $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ (22.40 and
$6.81 \% \mathrm{~N}, 27.30$ and $29.50 \% \mathrm{P}_{2} \mathrm{O}_{5}$ and 4.65 and 17.06% $\mathrm{K}_{2} \mathrm{O}$, respectively) as compared to plots receiving NPK in combination (Table 3). However, application of P and K individually enhanced available $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ remarkably ($\mathrm{p}<0.01$) over control. In all the cases, conjoint application of NPK markedly increased their available contents in soil.
From these results, it can be concluded that the integrated application of chemical fertilizers and vermicompost increased the grain and straw yield, and N, P and K uptake in rice as well as enhanced organic-C and available NPK in soil from strip L_{0} to strip L_{2}. Application of P and K fertilizers alone could significantly increase the grain yield by 22.20 and 11.07 \%, respectively over control. But omission of P and K caused yield loss by 8.30 per cent and 9.70 per cent and uptake decreased by 7.22 and 18.90 per cent, respectively over NPK fertilizers together. The respective apparent recovery of P and K was 7.10 and -21.00 per cent only in individual application which increased to 33.30 and 24.60 per cent by collective application of NPK. Results suggest that combined application of N, P and K fertilizers is inevitable for better performance of hybrid rice. This envisages the importance of balanced fertilization of hybrid rice with respect to N, P and K fertilizers.

Acknowledgement

The authors duly acknowledge Indian Council of Agricultural Research (ICAR) for providing financial support under AICRP on Soil Test Crop Response Correlation (STCR). I gratefully express my deep sense gratifies to my respected senior Mr. Raj Kumar Ph.D. SRF, Department of Soil Conservation \& Water Management, Chandra Shekhar Azad University of Agriculture \& Technology, Kanpur,(U.P.) India for his keen interest, valuable guidance, and constructive criticism throughout the pursuit of the present research paper and vital suggestion during preparation of this manuscript.

References

1. Channabasavanna AS, Biradar PD. Yield and yield attributes of transplanted summer rice as influenced by organic manures and zinc levels. Journal of the Maharashtra Agricultural University. 2001; 26:170-172.
2. Chatterjee D, Srivastava A, Singh RK. Fertilizer recommendations based on targeted yield concept involving integrated nutrient management for potato (Solanumtuberosum) in tarai belt of Uttarakhand. Indian Journal of Agricultural Sciences. 2010; 80:1048-1053.
3. Das KN, Basumatary A, Ahmed S Effect of phosphorus and potassium on yield and nutrient uptake of rice under IPNS in an Inceptisol of Assam, Annals of Plant and Soil Research. 2015; 17(1):13-18.
4. Ebaid RA, El-Refaee IS. Utilization of rice husk as an organic fertilizer to improve productivity and water use efficiency in rice fields. African Crop Science Conference Proceedings 2007; 8:1923-1928.
5. Gupta RK, Singh VP, Singh V, Singh B, Thind HS, Kumar A et al. Need based fertilizer nitrogen management using leaf colour chart in hybrid rice (Oryza sativa). Indian Journal of Agricultural Sciences. 2011; 81:1153-1157.
6. Jackson ML. Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi, 1973.
7. Kastens TL, Schmidt J, Dhoyvetter KC. Yield models implied by traditional fertilizer recommendations and a framework for including nontraditional information. Soil Science Society of America Journal. 2003; 67:351-364.
8. Kaur N, Benipal DS. Effect of crop residue and farmyard manure on K forms on soils of long term fertility experiment. Indian Journal of Crop Science. 2006; 1(1-2):161-164.
9. Mukhopadhyay D, Majumdar K, Pati R, Mandal MK. Response of RainfedRice to Soil Test-Based Nutrient Application in Terai Alluvial Soils. Better Crops 2008; 92(4):13-15.
10. Ogbodo EN. Effect of Crop Residue on Soil Chemical Properties and Rice Yield on an Ultisol at Abakaliki, Southeastern Nigeria, World. Journal of Agricultural Sciences. 2011; 7(1):13-18.
11. Pillai KG, Varmadevan VK. Studies on integrated nutrient supply system for rice. Fertil. News 1978; 23(3):11-14.
12. Rao S, Srivastava S. Soil test based fertilizer use - a must for sustainable agriculture. Fertilizer News 2000; 45:25-38.
13. Ramammoorthy B, Narasimham RL, Dinesh RS. Fertilizer application for specific targets of Sonara-64. Indian Farming 1967; 17(5):43-45.
14. Santhi R, Nateson R, Selvakumari G. Soil test crop response correlation studies under Integrated plant nutrition system for onion (Allium cepa L. var. Aggregatum) inInceptisols of Tamil Nadu. Journal of the Indian Society of Soil Science. 2002; 50(4):489-492.
15. Santhi R, Selvakumari G. Yield targeting and integrated plant nutrient system for soil fertility maintenance in rice based cropping sequence. Madras Agricultural Journal. 1999; 86(13):138-139.
16. Sheeba S, Chellamuthu S. Long-term influence of organic and inorganic fertilization on macro nutrient status of Inceptisol. Journal of the Indian Society of Soil Science. 1999; 47:803-804.
17. Siavoshi M, Nasiri A, Laware SL. Effect of organic fertilizer on growth and yield components in rice (Oryza sativa L.). Journal of Agricultural Science. 2011; 3(3):217-224.
18. Singh D, Kumar A. Effect of sources of nitrogen on growth, yield and uptake of nutrients in rice. Annals of Plant and Soil Research. 2014; 16(4):359-361.
19. Singh M, Singh VP, Sammireddy K. Effect of integrated use of fertilizer N and FYM or Green manure on transformation of N, K and S and productivity of rice wheat system on a vertisol. Journal of the Indian Society of Soil Science. 2001; 49:430-35.
