

Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com

E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2018; SP1: 2546-2548

Sudha Verma

Department of Horticulture, Birsa Agricultural University, Ranchi, Jharkhand, India

MR Choudhary

Department of Horticulture, S.K.N. College of Agriculture, Jobner, Rajasthan, India

S Sengupta

Department of Horticulture, Birsa Agricultural University, Ranchi, Jharkhand, India

S Mishra

Department of Horticulture, Birsa Agricultural University, Ranchi, Jharkhand, India

Varsha Rani

Department of Plant Physiology, Birsa Agricultural University, Ranchi, Jharkhand, India

Correspondence Sudha Verma Department of Horticulture, Birsa Agricultural University, Ranchi, Jharkhand, India

Economic aspect of vermicompost and sulphur application in the garlic cultivation

Sudha Verma, MR Choudhary, S Sengupta, S Mishra and Varsha Rani

Abstract

Garlic (*Allium sativum* L.) is one of the most important bulb crop grown worldwide. Due to its higher nutritive value and multipurpose uses in Indian culinary, it enjoys a special status among the spices. In recent years, vermicompost is widely advocated in integrated nutrient management. Enriched with nutrients and the nature of slow release, gives it a special status. Sulphur, on the other hand, is an important constituent of diallyl disulphide, which imparts the specific pungency to Garlic. By far the economics of the treatments is the most important consideration for making any recommendation to the farmers for its wide application.

In light of above facts, an experiment was conducted at Horticulture Farm, S.K.N. College of Agriculture, Jobner, Rajasthan. The investigation, consisted of sixteen treatment combinations with four levels of Vermicompost (Control, 2.5, 5.0 and 7.5 tha⁻¹) and four levels of sulphur (Control, 30, 60 and 90 kgha⁻¹) in Randomized Block Designs with three replications. For calculating economics, the average treatment yield along with primary market rates of the produce and costs of input were used. The result of the present investigation shows that the application of vermicompost along with sulphur increased the net returns. This result can be directly correlated with the corresponding increase in the yield of garlic. However, the highest benefit cost ratio (4.93) was obtained from the treatment having combination of Vermicompost @ 5 tons ha⁻¹ with Sulphur @ 90 kg ha⁻¹, which is due to comparatively higher return per rupee cost (5.93).

Keywords: Garlic, Vermicompost, Sulphur, Economics, Diallyl disulphide

Introduction

Garlic is one of the most important as well as highly nutritive bulb crop. Although a native of Central Asia and Mediterranean region, it has succeeded to make a unique blend in Indian cuisine. Specially rich in protein, carbohydrate & ascorbic acid, it also has a good calorific value. Due to its unique flavor, it is used in preparations of number of delicacies like chutneys, pickles, curry powder, tomato ketchup etc. Beside these, Garlic is also blessed with number of medical properties owing to which it enjoys an important place among Indian system of medicine (Ayurvedic, Unani, Siddha). Galic juice & oil is recommended to inhale in case of pulmonary tuberculosis, rheumatism, sterility, impotency, cough & rednesss of eyes (Pruthi, 1979). In, India garlic cultivated throughout the country occupying an area of 0.20 million ha with production of 1.26 million tones (Anonymous, 2010). India shares a good portion of global production and ranks second in area and third in production (Anonymous, 2010). However, the productivity of this crop is quite low i.e 5 MT/ha is not quite impressive & there is a lot of scope for improvement. This scope of improvement depends upon the scientific cultivation of the crop.

As a slow releasing organic manure, vermicompost is advocated in integrated nutrient management. Helpful in reducing C: N ratio, increasing humic acid content & proving the nutrient in readily available form to plants (Talashilkar *et al.* 1999), vermicompost plays number of roles for supporting the plants nutrient requirement. It contains 2.5 percent N, 1.5 percent P₂O₅, 1.5 percent K₂O & traces of micro-nutrient (Choudhary, 2006). On the other hand sulphur is the nutrient essential for certain amino acids, actively involved in protein synthesis & a chief constituent of diallyl disulphide, which imparts specific pungency to garlic. It is involved in the formation of chlorophyll that permits photosynthesis.

The crux of commercial importance of a crop depends upon its remunerative value fetched by the farmers. Thus the present investigation was conducted with the aim to bridge the knowledge gap and access the impact of vermicomost and sulphur upon the production economics of Garlic.

Materials and Methods

The experiment was conducted at Horticulture farm of S.K.N. College of Agriculture, Jobner during the Rabi Season of 2010. The variety 'G-41' of Garlic was selected for the investigation. A total of 16 treatment combinations comprising of various doses of vermicompost & sulphur was applied in Randomized Block Design having three replications.

Table 1: Treatment Details

Treatments	Details
V0S0	Control
V0S30	Vermicompost 0 t ha ⁻¹ +Sulphur 30 Kg ha ⁻¹
VOS60	Vermicompost 0 t ha ⁻¹ +Sulphur 60 Kg ha ⁻¹
V0S90	Vermicompost 0 t ha-1+Sulphur 90 Kg ha-1
V2.5S0	Vermicompost 2.5 t ha ⁻¹ +Sulphur 0 Kg ha ⁻¹
V2.5S30	Vermicompost 2.5 t ha ⁻¹ +Sulphur 30 Kg ha ⁻¹
V2.5S60	Vermicompost 2.5 t ha ⁻¹ +Sulphur 60 Kg ha ⁻¹
V2.5S90	Vermicompost 2.5 t ha ⁻¹ +Sulphur 90 Kg ha ⁻¹
V5.0S0	Vermicompost 5.0 t ha ⁻¹ +Sulphur 0 Kg ha ⁻¹
V5.0S30	Vermicompost 5.0 t ha ⁻¹ +Sulphur 30 Kg ha ⁻¹
V5.0S60	Vermicompost 5.0 t ha ⁻¹ +Sulphur 60 Kg ha ⁻¹
V5.0S90	Vermicompost 5.0 t ha ⁻¹ +Sulphur 90 Kg ha ⁻¹
V7.5S0	Vermicompost 7.5 t ha ⁻¹ +Sulphur 0 Kg ha ⁻¹
V7.5S30	Vermicompost 7.5 t ha ⁻¹ +Sulphur 30 Kg ha ⁻¹
V7.5S60	Vermicompost 7.5 t ha ⁻¹ +Sulphur 60 Kg ha ⁻¹
V7.5S90	Vermicompost 7.5 t ha ⁻¹ +Sulphur 90 Kg ha ⁻¹

For calculating economics, the average treatment yield along with prevailing market rates of the produce & cost of inputs were used. Net return was calculated by substracting total cost of production from Gross Return. Additional Return is the value calculated by substracting the net return in case of control from the net return due to a particular treatment. Return per rupee cost is however the ratio of Gross return & total cost of production in case of a particular treatment. Formula Used:

- 1. Net Return= Gross Return-Total Cost of Production
- **2.** Additional Return= Net Return from a particular treatment-Net Return from control.
- **3. Return per rupee cost=** Gross Return/Total Cost of production
- 4. Benefit Cost Ratio= Net Return/Total Cost of production

Result and Discussion

A perusal of data in Table 2, Figure 1.and Figure 2., revealed that the combined effect of different levels of vermicompost and sulphur had positively influenced the net return, benefit cost ratio and return per rupee cost in case of garlic cultivation.

The maximum net return of Rs. 519799 was recorded with the treatment $V_{7.5}S_{90}$ i.e. 7.5 tones of vermicompost with 90 kg ha of sulphur per hectare. However the maximum benefit cost ratio of 4.93:1 & the maximum return per rupee cost of 5.93, was recorded with the treatment $V_{5.0}S_{90}$.

The result can be directly co-related with the corresponding increase in the yield of garlic due to vermicompost and sulphur application. The benecial effect of vermicompost on yield may be attributed to its ability to sustain availability of nutrients and balanced C: N ratio through out the growing season. Further, sulphur being an integral constituent of certain amino acids, might have helped in increasing net assimilation rate of nitrogen along with other nutrients which might have contributed in increasing the yield. The synergistic effect of vermicompost along with sulphur had succeeded in influencing the yield positively. This increase in yield increase had a direct effect on the net return, benefit cost ratio and return per rupee cost. These findings are in close conformity with the results reported by, Manohar, 2011

Treatm	Total cost of	Bulb yield	Gross Return	Net Return	Additional Return	Returnper	B:C
ents	Production (Rs/ ha)	(q/ha)	(Rs/ ha)	(Rs/ ha)	(Rs/ ha)	rupee cost	ratio
V_0S_0	90101	93.83	281490	191389	0	3.12	2.12:1
V ₀ S ₃₀	90851	125.1	375300	284449	93060	4.13	3.13:1
V ₀ S ₆₀	91601	170.37	511110	419509	228120	5.58	4.58:1
V ₀ S ₉₀	92351	173.66	520980	428629	237240	5.64	4.64:1
V2.5S0	95101	120.16	360480	265379	73990	3.79	2.79:1
V _{2.5} S ₃₀	95851	142.39	427170	331319	139930	4.46	3.46:1
V2.5S60	96601	163.79	491370	394769	203380	5.09	4.09:1
V2.5S90	97351	186.83	560490	463139	271750	5.76	4.76:1
V5.0S0	100101	173.66	520980	420879	229490	5.2	4.20:1
V5.0S30	100851	189.3	567900	467049	275660	5.63	4.63:1
V5.0S60	101601	199.18	597540	495939	304550	5.88	4.88:1
V5.0S90	102351	202.47	607410	505059	313670	5.93	4.93:1
V7.5S0	105101	181.89	545670	440569	249180	5.19	4.19:1
V _{7.5} S ₃₀	105851	191.77	575310	469459	278070	5.44	4.44:1
V7.5S60	106601	207.41	622230	515629	324240	5.84	4.84:1
V _{7.5} S ₉₀	107351	209.05	627150	519799	328410	5.84	4.84:1

Table 2: Comparative economics of various treatments

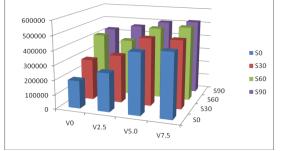


Fig 1: Combined effect of different Vermicompost and sulphur on net return (Rs ha-1)

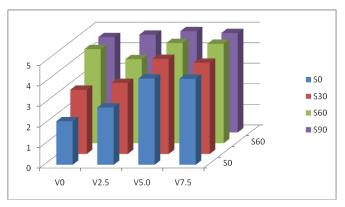


Fig 2: Combined effect of different Vermicompost and sulphur on benefit cost ratio.

References

- 1. Anonymous. Database of 2010-11, Directorate of Economics and Statistics, Krishi Bhawan, New Delhi, 2010.
- Choudhary, Santosh. Effect of organic and inorganic sources of nutrients on growth, yield and quality of sprouting Broccoli (Brassica oleracea L. var. italica) cv.C.B.H.-1. M.Sc. (Ag.) Tgesis, Submitted to Rajasthan Agricultural University of, Bikaner, Campus-Jobner, 2006.
- 3. Fisher RA, Yates F. Statistical Tables. Oliver and Boyd, Edinburgh, London, 1963.
- 4. Manohar SVS. Integrated nutrient management in tomato (*Lycopersicon esculentum* Mill). M.Sc. (Ag). Thesis, Submitted to S.K. Rjasthan Agricultural University, Bikaner Rajasthan, 2011.
- 5. Pruthi JS. Spices and condiments National Book Trust, Indian, New Delhi, 1979, 125-132.
- Talashilkar SC, Bhangarath PP, Mehta VB. Changes in chemical properties during composting of organic residues as influenced by earthworm activity. Journal of Indian Social Soil Science. 1999; 47(1):50-53.