

### Journal of Pharmacognosy and Phytochemistry

Available online at www.phytojournal.com



E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2018; 7(1): 666-670 Received: 27-11-2017 Accepted: 28-12-2017

#### Vora VD

Main Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

#### Sanepara DP

Main Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

#### Chopada MC

Main Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

#### Vekariya PD

Main Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

#### Patel JT

Main Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

#### Rakholiya KD

Main Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

#### Sharma GR

Main Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

#### Sutaria GS

Main Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

Correspondence Vora VD Main Dry Farming Research Station, Junagadh Agricultural University, Targhadia, Gujarat, India

# Thermal requirement of *kharif* crops under rainfed condition in north Saurashtra of Gujarat

## Vora VD, Sanepara DP, Chopada MC, Vekariya PD, Patel JT, Rakholiya KD, Sharma GR and Sutaria GS

#### Abstract

The experiment was conducted to determine thermal requirement of short (Sesame: Guj. Til-2, Black gram: T-9, Pearl millet: GHB-558) and long duration crops (Cotton: G Cot-Hy-8, Castor: GCH-6, Groundnut: GG-13) at the Dry Farming Research Station, Junagadh Agricultural University, Targhadia, (Dist: Rajkot, Gujarat, India) at north Saurashtra agro climatic zone – VI during *kharif* seasons of 2008-2010. The experiment was laid out in a sampling techniques and plot size was gross: 4.5m x 3.6m and net: 2.7m x 1.8m. The objectives of the experiment were to find out meteorologically suitable date of sowing, to calculate thermal requirement as well as heat use efficiency of the crops. The two years results revealed that the highest growing degree days (GDD), photo thermal units (PTU), heat use efficiency and yield for sesame, black gram, pearl millet and spreading groundnut were recorded during first date of sowing. For cotton and castor crops the two years results showed that the highest growing degree days (GDD), heliothermal units (HTU), photo thermal units (PTU), heat use efficiency and yield recorded under first date of sowing. It means first date sown crop utilized higher thermal / heat energy. Thus, delay in sowing resulted in declined yield in cases of both short and long duration *kharif* crops.

Keywords: Growing degree days, heat use efficiency, heliothermal units photo thermal units

#### Introduction

Thermal and photoperiodic conditions expressed by the crop during its life cycle play an important role in deciding the initiation and completion of different phenophases, growth and yield. The application of agro climatic indices provides a base for determining the effect of temperature and photoperiod on phenological behavior of the crop. Crop physiological process are dependent on integrated atmospheric parameters (Ko *et al.*, 2010)<sup>[7]</sup>, in which temperature is an important weather parameter that affects plant growth, development and yield. Winter crops are vulnerable to high temperature during reproductive stages and differential response of temperature change (rise) to various crops has been noticed under different production environments (Reddy *et al.*, 2013; Moniruzzaman *et al.*, 2015)<sup>[18, 12]</sup>.

The changing climate is one of the biggest threats to agriculture in the future. According to estimates, on an average 50% yield losses in agricultural crops are due to different abiotic stresses. The expected changes in the climate could strongly affect the crop production worldwide (Kajla *et al.*, 2015) <sup>[5]</sup>. As per estimates the global mean temperature is steadily rising which may result in significant decline in crop yields (Modarresi *et al.*, 2010; Kumar and Kumar; 2014) <sup>[11, 8]</sup>. Heat unit requirement or growing degree day (GDD) has been used for characterizing the thermal response in different winter crops (Rajput *et al.*, 1987) <sup>[16]</sup>. The quantification of heat use efficiency (HUE) is useful for the assessment of yield potential of a crop in different growing environments (Kingra and Kaur, 2011; Pal *et al.*, 2013) <sup>[6, 15]</sup>.

The aim of the present study was to find out the most favorable sowing date, thermal requirement and heat use efficiency of the *kharif* crops.

#### **Materials and Methods**

The experiment was conducted to determine thermal requirement of short (Sesame: Guj. Til-2, Black gram: T-9, Pearl millet: GHB-558) and long duration crops (Cotton: G Cot-Hy-8, Castor: GCH-6, Groundnut: GG-13) at the Dry Farming Research Station, Junagadh Agricultural University, Targhadia situated at north Saurashtra agroclimatic zone – VI at latitude of 22.17' N,longitude of 70.48' E and altitude 137.7 m above mean sea level. The experiment was conducted during the *kharif* seasons of 2008-2010. The design used was sampling techniques with three dates of sowing i.e. onset of monsoon, 15 days after onset of monsoon and 30 days after onset of monsoon in main plots and short and long duration crops in subplots. The plot size was kept as gross:  $4.5m \times 3.6m$  and net:  $2.7m \times 1.8m$ .

The growing degree days (GDD), heliothermal unit (HTU), photo thermal unit (PTU) and heat use efficiency (HUE) were calculated by using the given formula (Major *et al.* 1975, Ramkutty N. 2002,Sahu *et al.* 2007; Amrawat *et al.*, 2013 and Sondarva *et al.* 2014) <sup>[10, 17, 19, 1, 21]</sup> for different phenophases of long and short duration crops.

The methods of computation of the heat indices are as under.

#### (1) Growing Degree Days (GDD)

Growing Degree Days (GDD) (°C day) were calculated by simple accumulation of daily mean air temperature above a given threshold or base temperature.

$$GDD = \sum_{ds}^{dp} \left\{ \frac{(T_{max} + T_{min})}{2} - Tb \right\}$$

Where, ds = Dates of sowing dp = Dates of different phenological stages Tmax = Daily maximum temperature (°C) Tmin = Daily minimum temperature (°C) Tb = Base temperature (°C)

#### (2) Photothermal Units (PTU):

They can be calculated by the formula as under:  $\label{eq:ptu} \textbf{P}T\textbf{U} = \textbf{G} \textbf{D} \textbf{D} \ \times \textbf{N}$ 

Where, N=Maximum possible sunshine hours. It varies with latitude and season.

#### (3) Heliothermal Units (HTU)

They can be calculated by the formula as under:  $HTU = GDD \times n$ Where, n=Actual duration of bright sunshine hours.

#### (4) Heat Use Efficiency (HUE)

The Heat use efficiency (HUE) indicates the efficiency of crop to utilize the available heat energy.

The base temperatures for different crops were taken as under.

| Sr. No. | Crop         | Base Temperature (°C)                  |
|---------|--------------|----------------------------------------|
| 1       | Sesame       | 8.0 (Langham, 2007)                    |
| 2       | Black gram   | 10.0 (Das and Shree, 2013)             |
| 3       | Pearl millet | 10.0 (Ong,1983)                        |
| 4       | Castor       | 10.0 (Severino and Auld, 2014)         |
| 5       | Cotton       | 10.0 (Krzyzanowski and Delouche, 2011) |
| 6       | Groundnut    | 10.0 (Vara et al., 2009)               |

#### **Result and Discussions**

The average results of yield, Growing Degree Days, Heliothermal Units, Photothermal Units and Heat Use Efficiency of different crop viz., short and long duration under different dates of sowing are given in table 2.1 to 2.3 and 3.1 to 3.3, respectively.

**Sesame:** In this crop five important phenophases were under study i.e. germination, branching, flowering, capsule formation and maturity. The average of two years results presented in table 2.1 revealed that the highest growing degree days (GDD), heliothermal units and photo thermal units (PTU) of 1862°C day, 24554 °C day hours and 22387 °C day hours were recorded under first date of sowing. In general with advancement in sowing dates the thermal requirement of the crop was decreased. It means first date sown crop utilized higher thermal/heat energy. The highest heat use efficiency and yield 0.40 kg/ha /degree day and 747 kg/ha respectively were also observed under first sowing date. The similar result was also observed in soybean by Kumar *et al.* (2008) <sup>[8]</sup>.

**Black gram:** The germination, branching, flowering, pod development and maturity are the important phenophases of the crop. The results presented in table 2.2 revealed that the highest growing degree days (GDD) and photo thermal units (PTU) of 1708 °C day and 22387 °C day hours were recorded under first date of sowing. In general as the date of sowing advanced the thermal requirement of the crop was decreased. It means first date sown crop utilized higher thermal / heat energy. The highest heat use efficiency and yield of 0.41 kg/ha /degree day and 667 kg/ha, respectively were also observed in the first date sown crop. The similar result was obtained by Gill *et al.* (2011) <sup>[4]</sup> in mungbean crop.

**Pearl millet:** The important phenophases under study were germination, tillering, flowering, grain formation and maturity. The phenophase wise GDD and other thermal indices are depicted in Table 1.1. The results presented in table 2.3 revealed that the highest growing degree days (GDD) and photo thermal units (PTU) of 1641 °C day and 23461 °C day hours were recorded during first date of sowing respectively. The highest heat use efficiency and yield 1.2 kg/ha /degree day and 1980 kg/ha, respectively were also observed in the first date (10/07/09) sown crop.

**Cotton:** In the crop five important phenophases were under study i.e. germination, branching, flowering, ball formation and maturity. The average of two years results presented in table 3.1 revealed that the highest growing degree days (GDD), heliothermal units (HTU) and photo thermal units (PTU) of, 3120 °C day, 18511 °C day hours and 38542 °C day hours were recorded under the first dates of sowing, respectively. The highest heat use efficiency and yield 0.17 kg/ha /degree day and 531 kg/ha, respectively were also observed under first date of sowing.

**Castor:** In castor five important phenophases were under study i.e. germination, branching, flowering, capsule formation and maturity. The average of two years results presented in table 3.2 revealed that the highest growing degree days (GDD), heliothermal units (HTU) and photo thermal units (PTU) of 3092 °C day, 18301 °C day hours and 38221 °C day hours were recorded under the first dates of sowing, respectively. The highest heat use efficiency and yield 0.51 kg/ha /degree day and 1597 kg/ha, respectively were also observed under first date of sowing.

**Groundnut:** The five important phenophases were under study i.e. germination, flowering initiation, full pegging, pod development and maturity. The average of two years results presented in table 3.3 revealed that the highest growing degree days (GDD) and photo thermal units (PTU) of 2325 °C day and 29728 °C day hours were recorded under first dates of sowing, respectively. In general as the date of sowing advanced, the thermal requirement of the crop was decreased. It means first date sown crop utilized higher thermal / heat energy. The highest heat use efficiency and yield 0.29 kg/ha /degree day and 665 kg/ha, respectively were also observedunder first date of sowing. The similar finding was observed by Kingra and Kaur (2011) <sup>[6]</sup>.

|         |                       | Long duration crops                |                    |             |      |                    |        |                     |                    |        |  |  |  |  |
|---------|-----------------------|------------------------------------|--------------------|-------------|------|--------------------|--------|---------------------|--------------------|--------|--|--|--|--|
|         | Particular            |                                    | Cotton             |             |      | Castor             |        | Spreading groundnut |                    |        |  |  |  |  |
| Su No   |                       | I*                                 | $\mathrm{II}^{**}$ | $III^{***}$ | I*   | $\mathrm{II}^{**}$ | III*** | I*                  | $\mathrm{II}^{**}$ | III*** |  |  |  |  |
| 5r. no. | Yield (kg/ha)         | 531                                | 357                | 96          | 1597 | 1350               | 467    | 665                 | 443                | 36     |  |  |  |  |
|         | HUE                   | 0.17                               | 0.13               | 0.04        | 0.51 | 0.49               | 0.19   | 0.29                | 0.22               | 0.02   |  |  |  |  |
|         | Phenophase            | Growing Degree Days (GDD) (°C day) |                    |             |      |                    |        |                     |                    |        |  |  |  |  |
| 1.      | Germination           | 115                                | 113                | 123         | 153  | 133                | 123    | 153                 | 153                | 123    |  |  |  |  |
| 2.      | Branching             | 808                                | 715                | 679         | 876  | 768                | 639    | 700                 | 647                | 463    |  |  |  |  |
| 3.      | Flowering             | 1093                               | 1009               | 749         | 1156 | 1051               | 821    | 443                 | 422                | 326    |  |  |  |  |
| 4.      | Capsule/pod formation | 722                                | 620                | 417         | 545  | 486                | 308    | 593                 | 495                | 401    |  |  |  |  |
| 5.      | Maturity              | 384                                | 336                | 257         | 365  | 257                | 277    | 436                 | 451                | 402    |  |  |  |  |
|         | Total                 | 3120                               | 2792               | 2224        | 3092 | 2694               | 2167   | 2325                | 2066               | 1715   |  |  |  |  |

#### Table 1.1: Determination of thermal requirement for different *kharif* crops under rainfed condition

I\*. Onset of monsoon II\*\*. 15 days after onset of monsoon III\*\*\*. 30 days after onset of monsoon

Table 2.1: Yield (kg/ha) and phenophasic thermal requirement of sesamum (G.Til-2) (Average of 2 years)

|            |                   |       |                 | 1 <sup>st</sup> date of | sowing               |                               |       |                 | 2 <sup>nd</sup> date of | sowing               |                               | 3 <sup>rd</sup> date of sowing |                 |                         |                         |                               |  |
|------------|-------------------|-------|-----------------|-------------------------|----------------------|-------------------------------|-------|-----------------|-------------------------|----------------------|-------------------------------|--------------------------------|-----------------|-------------------------|-------------------------|-------------------------------|--|
| Sr.<br>No. | Phenophase        | Yield | GDD<br>(°C day) | HTU<br>(°C day hour)    | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) | Yield | GDD<br>(°C day) | HTU<br>(°C day hour)    | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) | Yield                          | GDD<br>(°C day) | HTU<br>(°C day<br>hour) | PTU<br>(°C day<br>hour) | HUE<br>(Kg/ha/°C<br>day hour) |  |
| 1          | Germination       |       | 105             | 182.5                   | 1416                 | 0.40                          | 547   | 125             | 341                     | 1676.5               |                               |                                | 118             | 367                     | 1554                    |                               |  |
| 2          | Branching         |       | 752             | 2035                    | 10128                |                               |       | 583             | 1912                    | 7764                 | 0.34                          |                                | 558             | 3235                    | 7179                    |                               |  |
| 3          | Flowering         | 747   | 422             | 1562                    | 5550                 |                               |       | 377             | 1650                    | 4959.5               |                               | 159                            | 361             | 2484                    | 4430                    | 0.10                          |  |
| 4          | Capsule Formation | /4/   | 370             | 2489                    | 4837                 |                               |       | 312             | 2559                    | 3872.5               |                               | 130                            | 311             | 2626                    | 3722                    |                               |  |
| 5          | Maturity          |       | 212             | 1821                    | 2621.5               |                               |       | 221             | 1462                    | 2808                 |                               |                                | 172             | 1505                    | 2017                    |                               |  |
|            | Total             |       | 1862            | 8089                    | 24554                |                               |       | 1619            | 7926                    | 21080                |                               |                                | 1517            | 10215                   | 18801                   |                               |  |

Table 2.2: Yield (kg/ha) and phenophasic thermal requirement of black gram (T-9)

|            |                 |       |                 | 1 <sup>st</sup> date of | sowing               |                               |       |                 | 2 <sup>nd</sup> date of | sowing               |                               | 3 <sup>rd</sup> date of sowing |                 |                      |                      |                               |  |  |
|------------|-----------------|-------|-----------------|-------------------------|----------------------|-------------------------------|-------|-----------------|-------------------------|----------------------|-------------------------------|--------------------------------|-----------------|----------------------|----------------------|-------------------------------|--|--|
| Sr.<br>No. | Phenophase      | Yield | GDD<br>(°C day) | HTU<br>(°C day hour)    | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) | Yield | GDD<br>(°C day) | HTU<br>(°C day hour)    | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) | Yield                          | GDD<br>(°C day) | HTU<br>(°C day hour) | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) |  |  |
| 1          | Germination     |       | 76              | 264                     | 1019                 | 0.41 384                      | 94    | 275             | 1254                    |                      |                               | 87                             | 333             | 1155                 |                      |                               |  |  |
| 2          | Branching       |       | 455             | 823                     | 6119                 |                               | 294   | 421             | 1380                    | 5644                 | 0.24 94                       |                                | 355             | 1877                 | 4568                 |                               |  |  |
| 3          | Flowering       | 667   | 347             | 1854                    | 4644                 |                               |       | 318             | 1323                    | 4116                 |                               | 04                             | 247             | 1834                 | 3003                 | 0.07                          |  |  |
| 4          | Pod development | 007   | 525             | 3630                    | 6772                 |                               | 364   | 544             | 3986                    | 6902                 |                               | 94                             | 414             | 3041                 | 5091                 |                               |  |  |
| 5          | Maturity        |       | 306             | 2452                    | 3833                 |                               | 258   | 1754            | 3180                    | )<br>6               |                               | 254                            | 2122            | 2982                 |                      |                               |  |  |
|            | Total           |       | 1708            | 9023                    | 22387                |                               | 1635  | 8718            | 21096                   |                      |                               | 1356                           | 9206            | 16949                |                      |                               |  |  |

Table 2.3: Yield (kg/ha) and phenophasic thermal requirement of pearl millet (GHB-558)

|            |                 |       |                 | 1 <sup>st</sup> date of | sowing               |                               |       |                 | 2 <sup>nd</sup> date of | sowing               |                               | 3 <sup>rd</sup> date of sowing |                 |                      |                      |                               |  |  |
|------------|-----------------|-------|-----------------|-------------------------|----------------------|-------------------------------|-------|-----------------|-------------------------|----------------------|-------------------------------|--------------------------------|-----------------|----------------------|----------------------|-------------------------------|--|--|
| Sr.<br>No. | Phenophase      | Yield | GDD<br>(°C day) | HTU<br>(°C day hour)    | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) | Yield | GDD<br>(°C day) | HTU<br>(°C day hour)    | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) | Yield                          | GDD<br>(°C day) | HTU<br>(°C day hour) | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) |  |  |
| 1          | Germination     |       | 105.5           | 1191                    | 1418                 |                               |       | 132             | 1876                    | 1779                 |                               |                                | 124             | 1688                 | 1634                 |                               |  |  |
| 2          | Tillering       |       | 644             | 8582                    | 8650                 |                               |       | 551             | 6690                    | 7322                 |                               |                                | 569             | 7798                 | 7296                 | 0.29                          |  |  |
| 3          | Flowering       | 1980  | 407             | 6116                    | 5305                 | 1.2                           | 1709  | 298             | 4136                    | 3840                 | 1.18                          | 539                            | 293             | 3903                 | 3599                 | 0.38                          |  |  |
| 4          | Grain Formation |       | 327.5           | 4849                    | 4218                 |                               |       | 300             | 4532                    | 3691                 |                               |                                | 261             | 3426                 | 3111                 |                               |  |  |
| 5          | Maturity        |       | 157.5           | 2722                    | 1940                 |                               |       | 170             | 3072                    | 2093                 |                               |                                | 128             | 1759                 | 1496                 |                               |  |  |
|            | Total           |       | 1641            | 23461                   | 21531                |                               |       | 1452            | 20308                   | 18727                |                               |                                | 1375            | 18574                | 17136                |                               |  |  |

|            |               |               |                 | 1st date of so       | wing                 |                               |        |                 | 2 <sup>nd</sup> date of so | owing                |                               | 3 <sup>rd</sup> date of sowing |                 |                      |                      |                               |  |  |
|------------|---------------|---------------|-----------------|----------------------|----------------------|-------------------------------|--------|-----------------|----------------------------|----------------------|-------------------------------|--------------------------------|-----------------|----------------------|----------------------|-------------------------------|--|--|
| Sr.<br>No. | Phenophase    | Yield         | GDD<br>(°C day) | HTU<br>(°C day hour) | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) | Yield  | GDD<br>(°C day) | HTU<br>(°C day hour)       | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) | Yield                          | GDD<br>(°C day) | HTU<br>(°C day hour) | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) |  |  |
| 1          | Germination   | n 115         | 165             | 1541                 |                      |                               | 113    | 309             | 1515.5                     |                      |                               | 123                            | 409             | 1615                 |                      |                               |  |  |
| 2          | Branching     |               | 808             | 2236                 | 10810                |                               | i [    | 715             | 2235                       | 9443                 |                               |                                | 679             | 4515                 | 8647                 |                               |  |  |
| 3          | Flowering     | 521 1093 7162 | 13626           | 0.17                 | 257                  | 1008.5                        | 7865.5 | 12374           | 0.12                       | 06                   | 749                           | 5853                           | 8965            | 0.04                 |                      |                               |  |  |
| 4          | BallFormation | 551           | 722             | 6274                 | 8378                 |                               | 357    | 620             | 5302                       | 7173                 | 0.13                          | 90                             | 417             | 3502                 | 4796                 |                               |  |  |
| 5          | Maturity      |               | 384             | 2676                 | 4188                 |                               |        | 336             | 2257                       | 3650.5               |                               |                                | 257             | 1741                 | 2769                 |                               |  |  |
|            | Total         |               | 3120            | 18511                | 38542                |                               |        | ŀ               | 2792                       | 17967.5              | 34156                         |                                |                 | 2224                 | 16019                | 26792                         |  |  |

 Table 3.1: Yield (kg/ha) and phenophasic thermal requirement of cotton (G.Cot Hybrid-8) (Average of 2 years)

Table 3.2: Yield (kg/ha) and phenophasic thermal requirement of castor (GCH-6)

|            |               |       |                 | 1 <sup>st</sup> date of sov | wing                 |                               |       |                 | 2 <sup>nd</sup> date of | sowing               |                               | 3 <sup>rd</sup> date of sowing |                 |                      |                      |                               |  |  |
|------------|---------------|-------|-----------------|-----------------------------|----------------------|-------------------------------|-------|-----------------|-------------------------|----------------------|-------------------------------|--------------------------------|-----------------|----------------------|----------------------|-------------------------------|--|--|
| Sr.<br>No. | Phenophase    | Yield | GDD<br>(°C day) | HTU<br>(°C day hour)        | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) | Yield | GDD<br>(°C day) | HTU<br>(°C day hour)    | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) | Yield                          | GDD<br>(°C day) | HTU<br>(°C day hour) | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C day<br>hour) |  |  |
| 1          | Germination   |       | 153             | 168                         | 2066                 |                               |       | 133             | 336                     | 1780                 |                               |                                | 123             | 409                  | 1615                 | 0.19                          |  |  |
| 2          | Branching     |       | 876             | 2511                        | 11686                | 0.51                          |       | 768             | 2624                    | 10114                | 0.49 4                        |                                | 639             | 4125                 | 8143                 |                               |  |  |
| 3          | Flowering     | 1507  | 1156            | 8478                        | 14242                |                               | 1250  | 1051            | 8549                    | 12754                |                               | 167                            | 821             | 6731                 | 9771                 |                               |  |  |
| 4          | Capsule Form. | 1397  | 545             | 4611                        | 6288                 |                               | 1550  | 486             | 3909                    | 5597                 |                               | 407                            | 308             | 2332                 | 3528                 |                               |  |  |
| 5          | Maturity      |       | 362             | 2529                        | 3939                 |                               |       | 257             | 1826                    | 2774                 |                               |                                | 277             | 2079                 | 2991                 |                               |  |  |
|            | Total         |       | 3092            | 18301                       | 38221                |                               |       | 2694            | 17242                   | 33017                |                               |                                | 2167            | 15275                | 26049                |                               |  |  |

**Table 3.3:** Yield (kg/ha) and phenophasic thermal requirement of groundnut (GG-13)

|            |                |       |                 | 1st date of se       | owing                |                               |       |                 | 2 <sup>nd</sup> date of | sowing               |                               | 3 <sup>rd</sup> date of sowing |                 |                      |                      |                               |  |  |
|------------|----------------|-------|-----------------|----------------------|----------------------|-------------------------------|-------|-----------------|-------------------------|----------------------|-------------------------------|--------------------------------|-----------------|----------------------|----------------------|-------------------------------|--|--|
| Sr.<br>No. | Phenophase     | Yield | GDD<br>(°C day) | HTU<br>(°C day hour) | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) | Yield | GDD<br>(°C day) | HTU<br>(°C day hour)    | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) | Yield                          | GDD<br>(°C day) | HTU<br>(°C day hour) | PTU<br>(°C day hour) | HUE<br>(Kg/ha/°C<br>day hour) |  |  |
| 1          | Germination    |       | 153             | 168                  | 2066                 | 0.29 443                      |       | 153             | 386                     | 2042                 |                               |                                | 123             | 409                  | 1615                 |                               |  |  |
| 2          | FlowringIniti. |       | 700             | 2106                 | 9396                 |                               | 647   | 2176            | 8518                    |                      |                               | 463                            | 2827            | 5946                 |                      |                               |  |  |
| 3          | Full pegging   | 665   | 443             | 1935                 | 5728                 |                               | 112   | 422             | 3073                    | 5374                 | 0.22                          | 26                             | 326             | 2140                 | 4002                 | 0.02                          |  |  |
| 4          | Pod devp.      | 005   | 593             | 4325                 | 7382                 |                               | 495   | 3638            | 6045                    |                      | 30                            | 401                            | 3526            | 4748                 | ]                    |                               |  |  |
| 5          | Maturity       |       | 436             | 3846                 | 5156                 |                               | 451   | 3937            | 5267                    |                      |                               | 402                            | 3389            | 4660                 |                      |                               |  |  |
|            | Total          |       | 2325            | 12378                | 29728                |                               | 2066  | 13210           | 27240                   |                      |                               | 1715                           | 12291           | 20970                |                      |                               |  |  |

#### Conclusion

Based on the results obtained from the field experiment, it was concluded that with delay in onset of monsoon, the GDD and HUE of sesame, black gram, pearl millet, spreading groundnut, cotton and castor crops were tended to decline. In all the crops, the highest thermal indices and heat use efficiencies were recorded in the first date of sowing.

#### Acknowledgement

The authors thanks to Indian Council of Agricultural Research (ICAR) for providing financial support for this work.

#### References

- 1. Amrawat T, Solanki NS, Sharma SK, Jajoria DK, Dotaniya ML. Phenology growth and yield of wheat in relation to agro meteorological indices under different sowing dates. Afr. J. Agric. 2013; 8:6366-6374.
- 2. Anil Kumar, Pandey V, Shekh AM, Manoj Kumar. Growth and Yield Response of Soybean (*Glycine max* L.) In Relation to Temperature, Photoperiod and Sunshine Duration at Anand, Gujarat, India. American-Eurasian Journal of Agronomy. 2008; 1(2):45-50.
- 3. Das M, Shree D. Temperature effect on morphobiochemical characters in some black gram (*Vigna mungo*) genotypes. ISRN Biotechnology, 2013.
- Gill KK, Guriqbal Singh, Bains GS, Ritu. Prediction of Mungbean Phenology of Various Genotypes Under Varying Dates of Sowing Using Different Thermal Indices. Book: Challenges and Opportunities in Agrometeorology. 2011, 491-497.
- 5. Kajla M, Yadav VK, Chhokar RS, Sharma RK. Management practices to mitigate the impact of high temperature on wheat. J Wheat Res. 2015; 7:1-12.
- 6. Kingra PK, Kaur P. Agroclimatic indices for prediction of pod yield of groundnut (*Arachis hypogaea* L.) in Punjab. J Res. 2011; 48:1-4.
- Ko J, Ahuja L, Kimball B, Anapalli S, Ma L, Green TR et al. Simulation of free air CO<sub>2</sub> enriched wheat growth and interactions with water, nitrogen, and temperature. Agricultural and Forest Meteorology. 2010; 150:1331-1346.
- 8. Kumar S, Kumar B. Thermal time requirement and heat use efficiency in wheat crop in Bihar. J Agrometeorol. 2014; 16:137-139.
- Langham DR. Phenology of Sesame. J. Janick and A. Whipkey (eds.). ASHS Press, Alexandria, VA. pp. 144-182.Krzyzanowski, F.C., Delouche, J.C. (2011). Germination of cotton seed in relation to temperature. Revista Brasileira de Sementes. 2007; 33:543-548.
- 10. Major MJ, Johanson DR, Tanner JW, Anderson IC. Effect of day length and temperature on soybean development. Crop Sci. 1975; 15:174-179.
- 11. Modarresi M, Mohammdi V, Zali A, Mardi M. Response of wheat yield and yield related traits of high temperature. Cereal Res. Commun. 2010; 38:23-31.
- 12. Moniruzzaman M, Rahman MM, Hossain MM, Karim AJM, Khaliq QA. Effect of sowing dates and genotypes on the yield of coriander (*Coriandrum sativum* L.). Bangladesh J Agril. Res. 2015; 40:109-119.
- 13. Naveen Kalra N, Chakraborty D, Sharma A, Rai HK, Jolly M, Chander S *et al*. Effect of increasing temperature on yield of some winter crops in northwest India. Current Science. 2008; 94:82-88.
- 14. Ong CK. Response to temperature in a stand of Pearl Millet (*Pennisetum typhoides* S. & H.): 4. Extension of

individual leaves. Journal of Experimental Botany 1983; 33:1731-1739.

- Pal RK, Rao MNN, Murty NS. Agro-meteorological indices to predict plant stages and yield of wheat for Foot Hills of Western Himalayas. Int. J. Agric. Food Sci. Technol. 2013; 4:909-914.
- Rajput RP, Desmukh MR, Paradker VK. Accumulated heat units and phenology relationship in wheat as influenced by planting dates under late sown conditions. J. Agron. Crop Sci. 1987; 159:345-349.
- 17. Ramkutty N. The global distribution of cultivable lands; current patterns and senility, 2002.
- Reddy AA, Rao PP, Yadav OP, Singh IP, Ardeshna NJ, Kundu KK *et al.* Prospects for *kharif* (Rainy Season) and Summer Pearl Millet in Western India. Working Paper Series no. 36. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 2013, 24.
- 19. Sahu DD, Chopada MC, Patoliya BM. Determination of sowing time for chickpea varieties in south Saurashtra, India. J Agrometeorol. 2007; 9(1):68-73.
- Severino LS, Auld DL. Study on the effect of air temperature on seed development and determination of the base temperature for seed growth in castor (*Ricinus communis* L.). Australian Journal of Crop Science 2014; 8:290-295.
- 21. Sondarva KN, Rank HD, Jayswal PS Summer sesame response to moisture and thermal regimes. Africal Journal of Agricultural Research. 2014; 9(27):2095-2103.
- 22. Vara PV, Kakani PVG, Upadhyaya HD. Growth and production of groundnut, in Soils, Plant Growth and Crop Production, [Ed. Willy H. Verheye], in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK, 2009.